Представлен общий операторный метод решения широкого круга задач, описываемых некоторыми классами дифференциальных уравнений, на основе развитой техники оператора обратной производной. Сконструированы и применены обратные дифференциальные операторы для решения ряда дифференциальных уравнений. Получены операторные тождества с участием оператора обратной производной, интегральных преобразований и обобщенных форм ортогональных полиномов и специальных функций. Приведены примеры решения различных уравнений в частных производных типа теплопроводности, диффузии, Фоккера–Планка и др. с помощью операторного метода. Продемонстрировано применение операторного подхода к решению ряда физических задач, связанных в том числе с движением заряженных частиц во внешнем поле.
41.85.Ja Particle beam transport
03.65.Db Functional analytical methods
05.60.Cd Classical transport
Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра теоретической физики. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.