It is demonstrated that the anisotropic transfer of photon momentum to an electronic subsystem results in induction of a photon-drag EMF in a standing electromagnetic wave along the axis of a nanotube with a spiral defect, which confirms the assumption found in the literature that the occurrence of such an effect in the presence of an external magnetic field is possible not only in 2-D systems but also in nanotubes with a spiral symmetry. One of the potential mechanisms of inducing the EMF connected with the spatial asymmetry of the electron-phonon interaction in a nanotube with a spiral defect is considered. This mechanism allows for such an EMF to occur upon heating the electron system by the Joule heat of the photon-drag current that flows through the nanotube.
$^1$Department of Physics, Moscow State University, Moscow, 119991, Russia
$^2$Department of Physics, Penza State University, ul. Krasnaya 40, Penza, 440026, Russia