## Вестник московского университета

**№** 1-1959

= 0

#### В. Е. МИКРЮКОВ и Н. З. ПОЗДНЯК

# ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОИСТВ ЖЕЛЕЗО-МЕДНО-ГРАФИТОВЫХ СПЛАВОВ С МАЛЫМИ ДОБАВКАМИ МЕДИ. ЧАСТЬ V

#### Введение

Уже давно было известно, что небольшие добавки меди к чугуну или железу улучшают их антикоррозионность, твердость и прочность. Тем не менее медь как легирующий элемент изучена недостаточно, мало исследованы свойства медистых сталей и чугунов, хотя в последние годы опубликован ряд обстоятельных исследований в этой области [1—4]. Еще менее исследована роль меди в железо-графитовых сплавах, несмотря на то, что исследования в этой области ведутся уже около двух десятилетий.

В одной из первых работ в этой области И. Ю. Бальшина и Н. Г. Короленко [5] было установлено, что добавление 10% меди повышает прочность антифрикционного металлокерамического чугуна на

25-30%.

Позднее Келлеи [6] исследовал влияние меди на свойства металлокерамических железо-медных сплавов, содержащих от 5 до 30% меди. Он установил, что в сплавах, содержащих 10% меди, спеченных при\* температуре 1100°С в течение от 0,5 до 24 часов, повышались предел прочности при растяжении соответственно от 15 до 60 кг/мм² и удлинение от 3 до 4%. Дальнейшее повышение содержания меди до 30% не дало улучшения механических свойств.

П. И. Бебнев [7] указывал, что наибольшее значение предела прочности при изгибе (63 кг/мм²) и твердости (по Бринеллю 130 кг/мм²) железо-медно-графитовых образцов соответствовало содержанию 10%

меди.

В наших предыдущих работах [8—10] при изучении влияния различных количеств меди на физико-механические свойства железо-медно-графитовых сплавов установлено, что оптимальные значения механических свойств соответствуют сплавам с содержанием 10% меди, при этом теплопроводность этих сплавов не зависит от температуры.

Все эти данные показывают, что наилучшими в практическом отношении свойствами обладают железо-медно-графитовые сплавы с содержанием около 10% меди. Однако промышленность, руководствуясь соображениями рентабельности, приступила к освоению железо-меднографитовых сплавов с малыми добавками (1,5—3%) меди. В соответствии с этим в последние годы выполнен ряд работ [1—4] по исследованию структур механических свойств железо-графитовых сплавов, легированных малыми добавками меди. Но этот вопрос остается все еще мало изученным, так как различные авторы получают противоречивые выводы; кроме того, тепловые и электрические свойства этих сплавов остаются совершенно неизученными.

В настоящей работе описываются исследования твердости, предела прочности при растяжении, сжатии и изгибе, а также ударной вязкости, коэффициента линейного расширения, теплопроводности и удельного электросопротивления в зависимости от пористости и температуры нагрева железо-графитовых сплавов с содержанием 2% меди в ис-

ходной смеси.

#### Технология изготовления сплавов

Сплавы были изготовлены из сулинского железного порошка, полная техническая характеристика которого была дана в работе [11]. Для легирования применялся электролитический мелкий медный поро-

Техническая характеристика порошков

Таблица !

| Химический состав, 0/0                                                                          | Насыпн<br>вес, г/с | A .                                                                                                | Содержани<br>фракций,<br>%              |
|-------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                 | Железны            | й порошок                                                                                          |                                         |
| Fe общего—98,6<br>C— 0,28<br>Si— 0,4<br>Mn— v,4<br>S— 0,037<br>P— 0,02<br>O <sub>2</sub> — 0,12 | 1,80               | $ \begin{array}{c} 0,1 & -0,15 \\ 0,075-0,1 \\ 0,05 & -0,075 \\ 0,046-0,05 \\ >0,046 \end{array} $ | 0,2<br>12,75<br>20,35<br>30,40<br>59,41 |
| М                                                                                               | едный по           | оошок                                                                                              |                                         |
| Си—99,9<br>Прочих — 0,1                                                                         |                    | $\begin{array}{c} 0.15 & -0.105 \\ 0.105 - 0.075 \\ 0.07 & -0.056 \\ > 0.056 \end{array}$          | 10<br>30<br>20<br>25                    |
| Графит та                                                                                       | йгинский           | обеззоленный                                                                                       |                                         |
| C— 98,9                                                                                         | 0,33<br>0,2*       | 0,075-0,1<br>0,075-0,056<br>0,046-0,05<br>>0,046                                                   | 10<br>20<br>30<br>40                    |

<sup>\*</sup> Содержание золы в процентах.

шок. Применялся тайгинский обеззоленный графит. Металлические порошки перед изготовлением из них смеси доводились до полного восстановления в атмосфере водорода: железный порошок — при 800° в течение двух часов, а медный — при 400° в течение 1 часа.

Химический и ситовой состав исходных материалов приведен в табл. 1.

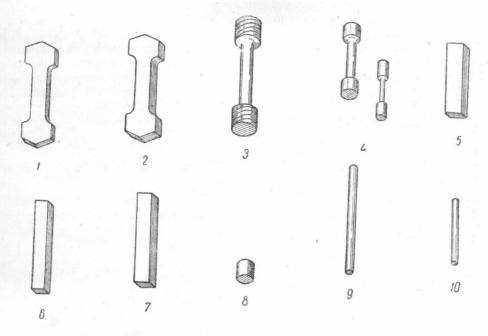



Рис. 1. Образцы для исследования физических и механических свойств сплавов на

растяжение:  $t-S=10 \times 5$  мм², L=82 мм;  $2-S=10 \times 10$  мм², L=82 мм; 3-D=8 мм, L=80 мм при  $t=400^\circ$ ; 4-D=6 мм, L=50 мм и D-3 мм, L=40 мм при  $t=-160^\circ$ ; на ударную вязкость:  $5-S=10 \times 10$  мм², L=50 мм;  $6-S=10 \times 10$  мм² при  $t=400^\circ$ ; 7-L=70 мм при  $t=-160^\circ$ ; на сжатие: 8-D=11 мм, h=10 мм; на тепло- и электропроводность: 9-D=4 мм,  $L=80\div 100$  мм при  $t=20\div 500^\circ$  С; для определения коэффициента линейного расширения: 10-D=3 мм, L=50 мм

Смешивание порошков производилось в два приема. Сначала смесь перемешивали вручную до однородного цвета, а затем — на механическом смесителе в течение 5 часов при 60 об/мин. Этого оказалось вполне достаточно для равномерного распределения частичек меди и графита в железном порошке. Удельный вес смеси определяли по способу аддитивности, а насыпной вес — на обычном волюмометре.

Состав смеси порошков до прессования, %

| Железный<br>порошок | Медный<br>порошок | Графит | Насыпной вес, г/см <sup>3</sup> | Удельный<br>вес, см <sup>3</sup> /г |  |
|---------------------|-------------------|--------|---------------------------------|-------------------------------------|--|
| 96,8                | 2                 | 1,2    | 2,11                            | 7,51                                |  |
| 98,8                | нет               | 1,2    | 2,03                            | 7,53                                |  |
|                     |                   |        |                                 |                                     |  |

Прессование образцов производилось непосредственно после окончания смешивания во избежание окисления смеси. Этим удалось получить относительно низкое содержание кислорода в спеченных образцах. Каждый вид образцов прессовали с пятью значениями пористости: 5, 10, 15, 20 и 25% (по 3 экземпляра для каждого значения). Однако, как правило, получить пористость спеченных образцов, точно совпадающую с заданной, не удавалось.

Состав исходных смесей приведен в табл. 2. Содержание графита

в смеси принято 1,2% по весу.

Прессование образцов производилось на гидравлическом 100-тонном прессе в металлических съемных прессформах по ограничителю, так как прессование по удельному давлению давало неидентичные результаты измерений. Форма и размеры образцов показаны на рис. 1.

#### Результаты испытания механических свойств

После спекания образцы имели химический состав, приведенный в табл. 3.

Таблица 3

| эы                  | СС     |      |      |      |      | Химиче | еский ( | состав, % |                                         |
|---------------------|--------|------|------|------|------|--------|---------|-----------|-----------------------------------------|
| Сплавы<br>Температу | ра спе | С    | Cu   | Si   | Mn   | Р      | S       | $O_2$     | железо                                  |
|                     |        |      |      |      |      |        |         |           |                                         |
| 53 13               | 150    | 1,05 | нет  | 0,24 | 0,28 | 0,02   | 0,03    | 0,08      | остальное                               |
| 54 15               | 200    | 0,99 | 1,73 | 0,26 | 0,27 | 0,021  | 0,026   | 0,12      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 55 1                | 150    | 0,88 | 1,86 | 0,29 | 0,25 | 0,018  | 0,028   | 0,091     | "                                       |
| 56 10               | 050    | 0.74 | 1,93 | 0,28 | 0,29 | 0,021  | 0.03    | 0.15      | 27                                      |

Из таблицы видно, что с повышением температуры спекания обезуглероживание понижается, а потери меди незначительно увеличиваются. Металлографическим анализом установлено, что в результате спекания при 1200° углерод переходит в цементит.

Сплав 53 имеет типичную перлитную структуру с очень мелкими включениями феррита, графита и цементита. Сплав 54 состоит из сорбитообразного мелкозернистого перлита и сплошной тонкой сетки цементита по границам зерен; кроме того, его зерна пронизаны иглами цементита. На поле многих зерен имеются участки феррита (рис. 2).

Микроструктура сплава 55 представляет собой пластинчатый перлит и феррит (рис. 3) аналогично сплаву 56 (рис. 4). Ни у одного из 3 медистых сплавов включений меди при увеличении × 400 не обнаружено.

Чтобы выяснить, в каком состоянии находится медь в сплавах, были изготовлены цветные фотографии микроструктур (при увеличении  $\times$  500).

На всех фотографиях этих шлифов включений структурно сво-

бодной меди не обнаружено.

Твердость образцов измерялась на прессе Бринелля с нагрузкой 250 кг при диаметре стального шарика 5 мм и выдержке 30 сек. Твердость определялась по трем замерам, а данные пределов прочности на растяжение, сжатие и изгиб выводились из испытаний трех образцов.

Результаты механических измерений приведены в табл. 4, из кото-

рой видно, что на физико-механические свойства и структуры металлокерамических сплавов большое влияние оказывает температура спекания. Добавки 2% меди в исходную смесь повышают твердость на 30%, предел прочности на растяжение на 14% и ударную вязкость на 30%. Предел прочности при сжатии практически не изменяется.

Повышение температуры спекания сплава 54, который имел такой же исходный состав, как и сплав 55, привело к резкому увеличению



Рис. 2. Микроструктура сплава 54, × 100. Травлен. Сорбитообразный перлит и цементитная сетка



Рис. 3. Микроструктура сплава 55, × 400. Травлен. Пластинчатый перлит и феррат

твердости: она оказалась в 2 раза выше, чем у сплава 55, который спекали при 1150°. Такое увеличение твердости получилось за счет образования в сплаве 54 мелкозернистой структуры с цементитной сеткой. Прочность при растяжении и сжатии, ударная вязкость и относительное удлинение практически не изменялись.

Понижение температуры спекания сплава 56 до 1050° уменьшило твердость примерно на 40%, а прочность при растяжении и сжатии изменилась незначительно. Относительное удлинение увеличилось почти на 30%.

Такие результаты можно объяснить тем, что в структуре данного сплава не оказалось цементной сетки.

Механические свойства исследованных сплавов оказались относительно высокими для железо-графитовых пористых сплавов. Это можно объяснить высоким качеством сулинского железного порошка (см. табл. 4).



Рис. 4. Микроструктура сплава 56, × 400. Травлен. Перлит и феррит

|           | Содер                                                          | жание |       | Твердость                                                                | -     |              |                               | Осн                         | овные ме.        | ханически | е свой | ства |      |                         |           | 1:                                  | 1, 1                    |
|-----------|----------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------|-------|--------------|-------------------------------|-----------------------------|------------------|-----------|--------|------|------|-------------------------|-----------|-------------------------------------|-------------------------|
| № образца | после спе-<br>кания, % пористо-<br>сти об-<br>разцов, г=5 мм и |       | растя | преділ прочности при растяженин, полученный в испытаниях при температуре |       |              | относи-<br>тельное<br>удлине- | ьное температурах испытания |                  |           |        |      |      | л прочно-<br>эи изгибе, | л прочно- |                                     |                         |
| No of     | общ.                                                           | меди  | %     | 30 сек.,<br>кг/мм <sup>2</sup>                                           | 20°   | <b>40</b> 0° | 600°                          | 86.0°                       | ние, %           | 20°       | 400°   | _50° | -90° | -1°0°                   | - 190°    | Предел 1 сти при кг/мм <sup>2</sup> | Предел 1 сти при кг/мм² |
|           |                                                                |       |       |                                                                          |       |              |                               |                             |                  |           |        |      |      |                         |           |                                     |                         |
| 53        | 1,05                                                           | нет   | 7-30  | 107 – 55                                                                 | 43-22 | 18,8         | -                             | 3,6                         | 1,30,8           | 1,36-0,9  | 0,3    | _    | 0,6  | 0,5                     | 0,4       | - 1                                 | 300—200                 |
| 54        | 0,99                                                           | 1,73  | 7—24  | 260-95                                                                   | 49-25 | -            | -                             | -                           | -                | 1,3 -0,4  | 0,2    | 0,5  | -    | _                       | 0,3       | _                                   | 175-135                 |
| 55        | 0,88                                                           | 1,86  | 6-30  | 139 - 52                                                                 | 49-26 | 32,5         | 23,1                          | 4,2                         | 2,2 <b>—</b> 0,5 | 1,8 0,7   | 1,1    | 0,9  | 0,6  | _                       | 0,45      | 89 – 34                             | 302- 95                 |
| 56        | 0,74                                                           | 1,93  | 8-26  | 94-41                                                                    | 47 30 | -            | -                             | -                           | 3,27-0,8         | 1,5 - 0,5 | _      | -    | -    | -                       | _         | -                                   | 213—160                 |
|           |                                                                |       |       |                                                                          |       |              |                               |                             |                  |           |        |      |      |                         |           |                                     |                         |
|           |                                                                |       |       |                                                                          |       |              |                               |                             |                  |           |        |      |      |                         |           |                                     |                         |
|           |                                                                |       |       |                                                                          |       |              |                               |                             |                  |           |        |      |      |                         |           |                                     |                         |
|           |                                                                |       |       |                                                                          |       |              |                               |                             |                  |           |        |      |      |                         |           |                                     |                         |

<sup>\*</sup> При положительных и отрицательных температурах испытывались образцы с пористостью около 10%. Предел прочности при сжатии устанавливался при появлении первой трещины.

При широком применении в промышленности железо-медно-графитовых конструкционных деталей машин может возникнуть необходимость измерить коэффициент линейного расширения. Образцы для дилатометра вытачивались на токарном станке с металлорежущими резцами. оснащенными пластинками из BK-2. Заготовками случае стандартные для служили ЭТОМ испытаний ударную вязкость образцы с двумя ступенями пористости, близкими к 10 и 20%. Измерение коэффициента линейного расширения произведено у пяти сплавов (сплав 36 имел структуру, аналогичную сплавам 53—56, но содержал 5% меди). Полученные величины коэффициента линейного расширения (а) приведены в табл. 5.

Таблица Величина коэффициента линейного расширения

|       | Пори-    | K              | Коэффициент (a) при температуре измерения, $10^{-6}$ |                |                |                |                |       |  |  |  |  |  |  |
|-------|----------|----------------|------------------------------------------------------|----------------|----------------|----------------|----------------|-------|--|--|--|--|--|--|
| Сплав | стость,  | <b>2</b> 0°    | 100°                                                 | 200°           | 300°           | 400°           | 500°           | 600°  |  |  |  |  |  |  |
| 53    | 10<br>20 | 11,62<br>10,71 | 12,2<br>11,30                                        | 12,85<br>12,98 | 14,20<br>14,96 | 15,71<br>15,20 | 16,16<br>15,23 | 15,60 |  |  |  |  |  |  |
| 54    | 10<br>20 | 12,14<br>11,62 | 12,54<br>12,15                                       | 12,77<br>12,74 | 14,96<br>14,90 | 15,62<br>16,10 | 15,76<br>16,20 | 15,89 |  |  |  |  |  |  |
| 55    | 10<br>20 | 12,1           | 12.3<br>12.1                                         | 13,6<br>13,1   | 14,1           | 14,5<br>14,2   | 15,8<br>15,2   | -     |  |  |  |  |  |  |
| 56    | 10<br>20 | 11,89          | 12,7<br>12,3                                         | 13,3           | 14,4<br>15,0   | 15,6<br>16,0   | 16,3           | 16,7  |  |  |  |  |  |  |
| 36    | 10       | 12,6           | 12,7                                                 | 14,2           | 15,2           | 16,1           | 16,3           | -     |  |  |  |  |  |  |
|       |          |                |                                                      |                |                |                |                |       |  |  |  |  |  |  |

Из данных табл. 5 видна некоторая тенденция увеличения коэффициента  $\alpha$  с ростом меди в сплаве, а пористость сплава оказывает весьма слабое влияние на изменение коэффициента  $\alpha$ .

### Удельное электросопротивление и теплопроводность металло-керамических сплавов

Удельное электросопротивление и теплопроводность измерялись на образцах 53, 55 и 56. Все эти образцы имели практически одинаковую пористость (10%). Удельное электросопротивление измеренных сплавов увеличивалось с повышением температуры, не следуя линейной зависимости (рис. 5); для образцов 53 и 55 в интервале температур от компактных до 400° удельные электросопротивления практически совпадают как по абсолютной величине, так и по температурной зависимости, выше 400° оно больше для образца 53, чем для образца 55. В интервале температур от 50 до 650°С удельное электросопротивление увеличивалось, причем для образца 56 оно было больше, чем для образцов 53 и 55. Это, по-видимому обусловлено различиями химического состава исследуемых образцов и температур их спекания.

Теплопроводность исследуемых сплавов линейно убывала с новышением температуры (рис. 6). По абсолютной величине она больше для сплава 53, чем для 55, а для последнего больше, чем для 56. Таким образом, теплопроводность сплава 55, содержащего в своем составе медь, меньше теплопроводности сплава 53, который меди не содержит, откуда можно заключить, что медь в сплаве 55 находится в твердом растворе, а не в свободном состоянии.

Экспериментальное значение соотношения Видемана-Франца

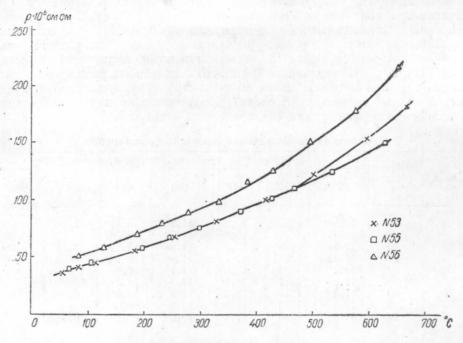



Рис. 5. Температурная зависимость удельного электросопротивления

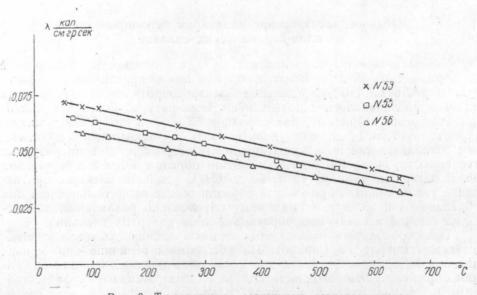



Рис. 6. Температурная зависимость теплопроводности

Тепловые и электрические свойства металлокерамических сплавов

| t° <sub>cp</sub> C | хал<br>см∙град•сек | р103 ом∙см | $\frac{\lambda}{\pi T} 108 \frac{\text{Batt·om}}{\text{град}^2}$ | t° <sub>cp</sub> C | хал<br>см∙град•сек | р106ом см | t° <sub>pc</sub> C | λ кал<br>см∙град•сек | р106ом см | $\frac{\lambda}{\kappa T} 108 \frac{\text{Batt} \cdot \text{OM}}{\text{град}^2}$ |
|--------------------|--------------------|------------|------------------------------------------------------------------|--------------------|--------------------|-----------|--------------------|----------------------|-----------|----------------------------------------------------------------------------------|
|                    | образец №          | 53; Fe+1   | % Ç                                                              |                    | образец № 55       |           | 3                  | образе               | 1 № 56    |                                                                                  |
| 52,3               | 0,0720             | 35,2       | 3,25                                                             | 63,8               | 0,0653             | 39,70     | 82,1               | 0,0583               | 51,00     | 3,50                                                                             |
| 82,3               | 0,0703             | 39,8       | 3,30                                                             | 104,8              | 0,0`34             | 45,00     | 127,1              | 0,0565               | 58,80     | 3,47                                                                             |
| 111,6              | 0,06~5             | 43,5       | 3,28                                                             | 194,0              | 0,0586             | £8,20     | 185,1              | 0,0532               | 69,50     | 3,36                                                                             |
| 181,1              | 0,0645             | 54,6       | 3,24                                                             | 243,8              | 0,0565             | 66,30     | 231,7              | 0,0509               | 78,80     | 3,31                                                                             |
| 251,0              | 0,0609             | 66,2       | 3,21                                                             | 296,3              | 0,0534             | 75,10     | 277,8              | 0,0492               | 88,50     | 3,29                                                                             |
| 326,8              | 0,0564             | 81,4       | 3,18                                                             | 371.6              | 0,0490             | 90,10     | 331,3              | 0,0477               | 98,10     | 3,23                                                                             |
| 414,8              | 0,0518             | 100,0      | 3,14                                                             | 426,6              | 0,0463             | 101,00    | 381,0              | 0,0431               | 1:6,40    | 3,20                                                                             |
| 499,6              | 0,0468             | 123,5      | 3,12                                                             | 466,0              | 0,0445             | 110,00    | 430,0              | 0,0128               | 127,00    | 3,17                                                                             |
| 594,0              | 0,0419             | 154,0      | 3,10                                                             | 532,6              | 0,0427             | 125,00    | 494,0              | 0,0381               | 151,60    | 3,14                                                                             |
| 664,3              | 0,0376             | 182,0      | 3,09                                                             | 627,0              | 0,0377             | 151,10    | 574,0              | 0,0355               | 178,70    | 3,12                                                                             |
| .,0                | 0,10.0             |            |                                                                  |                    |                    |           | 649,0              | 0,0314               | 217,50    | 3,09                                                                             |
|                    |                    |            |                                                                  |                    |                    |           | 1                  |                      |           |                                                                                  |
|                    |                    |            |                                                                  |                    |                    |           |                    |                      |           |                                                                                  |
|                    | 1                  |            |                                                                  |                    |                    |           |                    |                      |           |                                                                                  |
|                    |                    |            |                                                                  |                    |                    |           |                    | 1                    |           |                                                                                  |

больше теоретического значения (табл. 6), следовательно, процесс теплопроводности в исследуемых сплавах осуществляется как электронной проводимостью, так и теплопроводностью решетки.

#### Заключение

1. Определялись пределы прочности при растяжении, сжатии и изгибе, а также твердость, ударная вязкость, коэффициенты линейного расширения, теплопроводность, удельное электросопротивление при разных температурах и структурах железо-графитовых сплавов с добавками 2% меди в исходной смеси. Полученные результаты были сопоставлены с железо-графитовым сплавом, изготовленным при тех же условиях, но без меди.

2. Установлено, что малые добавки меди в твердом растворе сплава значительно улучшают механические свойства железо-графитовых сплавов. Теплопроводность этих сплавов меньше, а удельное электросопротивление больше, чем для сплава без меди, откуда следует, что

медь в сплаве находится в твердом растворе.

3. Величина коэффициента линейного расширения слабо зависит от пористости и по абсолютному значению близка к литым компактным сталям такого же состава.

#### ЛИТЕРАТУРА

1. Schwarz H., Fiordalis V., Fisher I., Shumar I., Trinter M. Trans-ASM., 28, March, 143-156, 1940.

2. Михайлов-Михеев П. Б. Медистая сталь. Металлургиздат, 1941.

3. Крянин И. Р., Бабушкина Г. И. Металловедение и обработка металлов, № 2, 1955.

4. Крянин И. Р., Смоленский С. И., Студниц М. А., Бабушкина Г. И. Металловедение и обработка металлов, № 3, 1956.

5. Бальшин М. Ю. и Короленко Н. Г. Вестник металлопромышленности, № 3, 1939.

- 6. Kelley F. Iron Age, 158, 7, 57—60, 1946. 7. Бебнев П. И. В кн.: «Исследования в области металлокерамики», ЦНИИТМ, кн. 56, Машгиз, 1953.
- Микрюков В. Е., Поздняк Н. З. Вестн. МГУ, № 9, 1954.
   Микрюков В. Е., Поздняк Н. З. Вестн. МГУ, № 10, 1954.

 Микрюков В. Е. и Поздняк Н. З. Вестн. МГУ, № 2, 1953.
 Лурье И. Л., Тимошенко Н. Н. Порошковая металлургия. Металлург издат, 1954.

Поступила в редакцию 30. 4 1958 г.

Кафедра молекулярной физики