Вестник московского университета

№ 1-1959

and

А. И. КУКИНА, В. Б. ЕВДОКИМОВ, Л. И. БАРСОВА

КОНТАКТНЫЕ ПРЕВРАЩЕНИЯ *н*-БУТАНА И ДЕГИДРОГЕНИЗАЦИЯ ИЗОПРОПИЛОВОГО СПИРТА на *а*-ЖЕЛЕЗЕ

Систематическое исследование железных катализаторов в целях определения энергии связи Q_{C-K} интересно для теории подбора катализаторов [1]. Особые трудности встречаются при проведении реакции дегидрогенизации углеводородов по индексу >C-C < , так как при

Н Н

этом наблюдается значительный крекинг реагирующих веществ. В целях ослабления крекирующего действия катализаторов был применен смешанный железный катализатор с добавками окиси хрома [2].

В настоящей работе исследовалась реакция дегидрогенизации *н*-бутана и изопропилового спирта на α -Fe, α -Fe₂O₃, Fe₃O₄ в широком интервале температур (200—620°).

В патентной литературе [3] имеются указания на то, что α -Fe и Fe₃O₄ являются активными компонентами катализаторов дегидрогенизации бутана. Поставив своей задачей исследование дегидрогенизации *н*-бутана на железных контактах, мы учитывали возможность образования карбидов железа. Подгурский, Де-Витт, Куммер, Эмметт [4] предложили простой и оригинальный метод получения низкотемпературных карбидов обработкой восстановленных катализаторов синтеза аммиака предельными углеводородами (C₂H₆, C₃H₈, C₄H₁₀, *н*-C₅H₁₂). Низкотемпературные карбиды железа Fe₂C и Fe₃C хорошо изучены [5]. Они образуются при обуглероживании α -железа окисью углерода и не могут быть выделены как индивидуальные вещества. Их рассматривают как структуры внедрения углерода в решетку металла и охарактеризовывают методами рентгеноструктурного, термомагнитного и химического анализа [6].

Экспериментальная часть

α-Окись железа. К 2 н. раствору азотнокислого железа при механическом перемешивании добавлялся раствор 2 н. раствора едкого натра (с 10-процентным избытком) в течение 50 минут. Выпавший осадок тщательно отмывался (декантацией) горячей водой (55°) до отрицательной реакции на NO⁻³ по дифениламину, отфильтровывался, формовался и сушился при 110—120° в течение 3 часов.

Пирофорное а-железо. К раствору сернокислого закисного железа при постоянном перемешивании прибавлялся раствор шавелевой кислоты (избыток 20%). Осадок оксалата железа промывался горячей водой (55°) до отрицательной реакции на SO₄⁻⁻ по хлористому барию, отфильтровывался и высушивался на воздухе. Оксалат железа восстанавливался электролитическим водородом (скорость пропускания водорода 2,5 л/час); при этом температура печи медленно поднималась (за 4 часа до 450°). В целях очистки применявшийся для восстановления водород проводился над восстановленной медью при 350° (удаление следов кислорода), а затем пропускался через насыщенный раствор едкого кали и через колонки с хлористым кальцием и пятиокисью фосфора. Восстановление заканчивалось за 6 часов. Полнота восстановления оксалата контролировалась анализом газов на окись углерода и углекислый газ.

Температура восстановления оксалата была выбрана так, чтобы, с одной стороны, превышать критическую точку воды (374°), с другой — находится в интервале наибольших скоростей восстановления окислов железа (450°), поскольку известно, что восстановление оксалата идет через промежуточную стадию образования Fe₃O₄[7]. Рентгенограмма восстановленного катализатора и сравнение ее с рентгенограммой железа АРМКО (99,6%) показали, что было получено железо с кубической объемноцентрированной решеткой (hkl:110, 002, 112, 220), не содержащее никаких кристаллических примесей.

В работе был применен н-бутан (состав: μ -C₄H₁₀ — 89,44%, *i*-C₄H₁₀ — 5,2%, μ -C₄H₈ — 3,0%, C₄H₆ — 0,87%, ацетон — 1,0,% *i*-C₄H₃ — 0,9%, C₅ — 0,16%) и перегнанный изопропиловый спирт (т. кип. 80,5— 81,0° при 750 мм; n_D^{20} 1,3778; d_4^{20} 0,7847). Во всех опытах изопропиловый спирт вводился в реакционную трубку при помощи автоматической подачи со скоростью 0,19 мл/мин (объемная скорость 2,4 л/час). Кинетические опыты проводились проточным методом.

Стеклянная часть прибора состояла из кварцевой трубки, имеющей вставной реактор, наполняемый катализатором (объем 5 мл), когорый мог быть вынут через выходное отверстие приемника, во время реакции герметически закрытого. Для изучения кинетики газовых реакций применялись на подаче и приеме газа усовершенствованные автоматические газометры системы Патрикеева (УГСП). В некоторых специально поставленных опытах по длительному карбидированию катализаторов *н*-бутан поступал из газометра с постоянным уравнением насыщенного раствора хлористого натрия, проходил реометр для измерения скорости подачи и очищался от непредельных углеводородовпропусканием через концентрированную серную кислоту и щелочной раствор пирогаллола и от влаги — через колонку с хлористым кальцием и пятиокисью фосфора.

Газообразные продукты всех реакций анализировались на аппарате ВТИ и на аппаратах для низкотемпературной ректификации газов (ЦИАТИМ 51-V, ЦИАТИМ 52). Образцы катализаторов исследовалисьрентгеноструктурным, термомагнитным и химическим методами.

Термомагнитные измерения проводились на специальной установке, состоящей из весов непрерывного взвешивания ВН-20, печи и электромагнита с набором регулировочных реостатов. Образец, вес которого не превышал 0,001 г, запаянный в кварцевый капилляр, укреплялся при помощи специального держателя на одно из плеч коромысла, после чего весы уравновешивались в присутствии магнитного поля. После включения тока весы снова уравновешивались. Деление шкалы весов, соответствующее при комнатной температуре равновесию, принималось за начало отсчета. В дальнейшем включался нагреватель печи и отмечалось деление шкалы весов и соответствующие им температуры при помощи термопары, горячий спай которой находился рядом с капил-

Рис. 1. Термомагнитные кривые *а*-железа, карбидированного *н*-бутаном (V = 2,8 л/час, 5 мл *а*-железа, 22 часа); $I = 200^\circ$; $II = 275^\circ$; $III = 325^\circ$. A — точка Кюри карбида Хэгга — 245 \pm 5°; B точка Кюри магнетита 587 \pm 5°; B — точка Кюри *а*-железа 790 \pm 5°

ляром. Ток в электромагните оставался постоянным и регистрировался амперметром М-80 (класс 0,5). Величина тока от опыта к опыту оставалась постоянной и подбиралась таким образом, чтобы заведомо довести образец до насыщения, что устанавливалось в предварительных опытах. Продолжительность анализа не превышала 10—20 мин. Анализу подвергались отработанные катализаторы, хранящиеся под ацетоном. Так как в таком виде их нельзя было запаивать в кварцевые капилляры, то перед анализом образцы некоторое время находились на воздухе, чем можно объяснить наличие на термомагнитных кривых фазы Fe₃O₄.

Ранее указывалось на возможность определения количественного состава фаз под термомагнитной кривой, но этот метод широко не использовался [6, 8]. Исходя из того, что каждая ферромагнитная фаза имеет свою определенную точку Кюри и для смеси фаз они аддитивны, мы проводили количественный анализ фаз по полученным кривым, определив предварительно воспроизводимость результатов анализа (точность $\pm 5\%$).

На рис. 1 показано, что доля каждой фазы, вносимая в общий магнитный момент, определяется экстраполяцией от ее точки Кюри до указанной температуры.

Рентгенограммы катализаторов были получены по методу Дебая— Шеррера (способ порошков) на трубке БСВ-4 с железным анодом (λ Fe_a = 1,934 кХ; λ Fe_β = 1,753 кХ) при нагрузке 7 ма, напряжении 25 кв и экспозиции 3—4 часа на пленках ХХ. Часть снимков была получена с применением фильтра из металлического марганца для поглощения β-излучения. Для предохранения образцов от окисления на воздухе они вынимались из реактора в абсолютном ацетоне и были сняты в специальных капиллярах из стекла пирекс под ацетоном.

Дегидрогенизация н-бутана на α-Fe₂O₃ и восстановленном α-железе

6,5 α -Fe₂O₃ (5 мл) помещались в каталитическую трубку по длине слоя 3 см и обрабатывались воздухом при 450° (6 час.) и 2 л азота. Опыты по дегидрогенизации *н*-бутана на α -Fe₂O₃ проводились в интервале температур 350—620°. Продолжительность опыта 60 мин. с последующей регенерацией воздухом и азотом в течение 2 часов. Каталитического превращения *н*-бутана на α -Fe₂O₃ при температурах ниже 500° не наблюдается. Начиная с 500° в продуктах реакции заметно увеличивается содержание непредельных углеводородов (при 520°—17%) и водорода. Однако оценить количество бутилена и соответствующее ему количество водорода не представляется возможным, так как наблюдается сильное углеобразование.

Кинетические опыты в интервале $250-350^{\circ}$ были проведены на а-железе, полученном восстановлением Fe₂O₃ в течение 50 часов при 500°, и на а-железе, полученном из оксалата железа (см. выше) при 450°. В обоих случаях содержание непредельных углеводородов и водорода в продуктах реакции не превышало 1-2%. Разгонка газов на аппарате ЦИАТИМ-52 во всех случаях показала наличие следов C₁, C₂, C₃ при основном содержании C₄.

Таким образом, определение энергии активации дегидрогенизации *н*-бутана на железных катализаторах при этих условиях оказалось невозможным.

Взаимодействие н-бутана с а-железом при 200-350°

Процесс карбидообразования при взаимодействии *н*-бутана с *а*-железом был изучен нами в интервале температур 200—590° при разных скоростях и времени контакта от 20 до 22 часов.

Уже при температуре 200° наблюдается образование низкотемпературного карбида Хэгга.

На рис. 1 показаны термомагнитные кривые а-железа, подвергнутого карбидированию *н*-бутаном при 200, 275 и 325°. По оси абсцисс отложена температура в °С, по оси ординат — магнитный момент в произвольных единицах. Как видно из рис. 1, точка Кюри $245 \pm 5^{\circ}$ соответствует карбиду Хэгга; вторая точка $587 \pm 5^{\circ}$ соответствует магнегиту, который образуется при стоянии образца на воздухе перед анализом. Третья точка Кюри $790 \pm 5^{\circ}$ указывает на наличие а-железа. Рентгеновский анализ подтвердил образование орторомбического низкотемпературного карбида Fe₂C. Было установлено, что скорость карбидирования уменьшается со временем. Контрольные пробы газообразных продуктов реакции карбидирования, взятые после 11 и 19 часов контакта, показали уменьшение содержания водорода с 3,5 до 2,0% соответственно. В газообразных продуктах реакции были обнаружены неконденсирующаяся фракция, следы С₁, С₂, С₃ при основном содержании *н*-бутана. Так как количества фракций газов после ректификации были недостаточны для

Рис. 2. Кинетика гидрирования карбида Хэгга

анализа на ВТИ, был проделан масс-спектрометрический анализ неконденсированной фракции. Анализ показал наличие СН₄ и H₂ в соотношении 2:98. Для определения наличия карбида Хэгга одновременно был использован метод химического анализа — гидрирование при низких температурах. Для, этого было проведено карбидирование н-бутаном 8 г а-железа в течение 20 часов при 330° (скорость 50 мл/мин). Затем карбид был прогидрирован при этой температуре, и полученная при этом водород-метановая смесь газов сжигалась над окисью меди при 800°, а углекислый газ поглощался аскаритом. Из предположения, что весь углерод в углекислом газе был карбидным, определено содержание карбида. Оно оказалось равным 33%.

Для α-железа, карбидированного в аналогичных условиях, была изучена кинетика снятия карбида.

На рис. 2 показана кривая: время снятия карбида — общее количество углекислого газа. Можно видеть, что гидрирование карбида, полученного в наших условиях, заканчивается почти полностью за 16 часов. Это подтверждается термомагнитной кривой, на которой обнаруживаются лишь следы карбида Хэгга.

Для образца, карбидированного при 350°, термомагнитный анализ

локазал наличие цементита (Кюри 207°) в количестве 66—69% (рис. 3).

Превращение *н*-бутана на α-железе осуществлялось при 560—590° в течение 9 часов. При этом было обнаружено значительное углеобра-

Рис. 3. Термомагнитная кривая а-железа, карбидированного *н*-бутаном (V = 2,8 л/час, 5 мл *а*-железа; 22 часа; 350°). А — точка Кюри цементита 207 + 5°

зование, резко возрастающее при повторной обработке водородом. В обоих случаях скорость выделения газов была постоянной (ехр_{560°} =

Состав газа, % Время, Темпера-Примечание exp тура, °С час. $C_n H_{2n}$ H_2 $C_n H_{2n+2}$ 85,6 85,7 83,8 87,4 78,8 79,0 3,5 560 11,0 1,09 1 11,8 4 8 11,9 4,3 2 590 8,0 4,6 1,17 8 9,0 5,2 13,2 590 1 7,8 1.25 частично восстановленное 8,9 6,5 5,6 26,2 64,9 4 а-железо 57 58,6 34,9 41,3 53,1 9 8,4 35,5 56,2

Изменение состава газа при контакте н-бутана с а-железом

Таблица 1

176

=1,09 и ехр $_{590^\circ} = 1,17$), состав газов практически был одинаков (см. табл. 1). После обработки контакта водородом в течение 3 часов при 590° скорость разложения *н*-бутана (ехр $_{590^\circ} = 1,25$) и состав газа не изменились (табл. 1).

Возможно, что активированный углерод, оставшийся после обработки водородом, вызывал разложение *н*-бутана в большей степени, чем *а*-железо.

При контактировании *н*-бутана с Fe₃O₄ в течение 16 часов при температурах 300—510° карбидов железа не было обнаружено.

Дегидратация изопропилового спирта на α-железе и роль карбида Fe₂C

Для характеристики каталитической активности карбидированной поверхности была использована реакция дегидрогенизации изопропилового спирта.

Таблица 2

№ опыта	Темпера-	υ _{НTД}	lgv _{НТД}	1/T · 104	Данные газового анализа, %	
	тура, ^о С				C_nH_{2n}	H_2
	Во	сстановленн	ое а-железо; а	ε=10,7 ккал/	моль	
30 33 22 28 23 27 26 25 32	236 239 242 246 250 262 268 280 288	5,1 6,7 8,6 9,0 14,3 15,4 16,4 17,4 182	$\begin{array}{c} 0,7075\\ 0,8261\\ 0,9345\\ 0,9512\\ 1,1562\\ 1,1875\\ 1,2148\\ 1,2504\\ 1,2601\\ \end{array}$	19,64 19,53 19,42 19,27 18,76 18,69 18,48 18,08 18,08	0,1 0,5 0,2 1,0 1,1 1,9 2,0 2,5 2,6	99,9 99,5 99,8 99,0 98,9 98,1 98,0 97,5 97,4
	Карб	идированно	е α-железо Fe	₂С; ε=18,7 к	кал/моль	
4 5 6 7 8 9	324 332 311 296 298 326	11,8 14,2 8,0 5,7 5,5 12,4	$\begin{array}{c} 1,0719\\ 1,1523\\ 0,9031\\ 0,7559\\ 0,7414\\ 1,0934 \end{array}$	16,75 15,53 17,12 17,57 17,51 16,69	$ \begin{array}{c} 1,0\\ 1.2\\ 0,6\\ 0,5\\ 0,5\\ 1,2 \end{array} $	99,0 98,8 99,4 99,5 99,5 98,8
α	- железо, кар	бидированно	ре <i>н</i> - бутаном = 17,0 ккал/и	при 32 5 ⁹ в т моль	ечение 22 ча	сов;
12 13 16 14 17 15	288 303 303 324 314 326	5,0 8,2 8,1 12,9 11,0 14,6	$\begin{array}{c} 0,6990\\ 0,9138\\ 0,9085\\ 1,1105\\ 1,0413\\ 1,1644 \end{array}$	$\begin{array}{c} 17,82\\ 17,36\\ 17,36\\ 16,75\\ 17,04\\ 16,69 \end{array}$	0,5 0,8 0,8 1,5 1,2 1,8	99,5 99,2 99,2 98,5 98,8 98,8
	Гидрир	ованный кар	обид Хэгга (Fe	e_2C); $\epsilon = 11,0$	ккал/моль	
5 2 9 3 6 8 7 4	239 241 248 258 258 262 276 280	7,5 7,6 9,3 12, 2 12,0 12,7 16, 2 16,7	0,8751 0,8808 0,9685 1,0864 1,0792 1,1032 1,2095 1,2227	$19,50 \\ 19,46 \\ 19,19 \\ 18,03 \\ 18,03 \\ 18,69 \\ 18,21 \\ 18,08$	$\begin{array}{c} 0,6\\ 0,8\\ 1,0\\ 1,1\\ 1,0\\ 1,5\\ 2,0\\ 2,0 \end{array}$	99,4 99,2 99,0 98,9 99,9 98 ,5 98,0 98,0

Дегидрогенизация изопропилового спирта

12 Вестник Московского университета, № 1

Катализаторы, применявшиеся для дегидрогенизации изопропилового спирта приготовлялись по одной методике: 6 г оксалата железа, помещенного в реактор (длина слоя 5 см), восстанавливались при медленном поднятии температуры до 450° электролитическим водородом (скорость пропускания 5 л/час). В опытах, проводимых в целях определения энергии активации дегидрогенизации изопропилового спирта на восстановленном α-железе регенерация катализатора осуществлялась водородом в течение часа при температуре на 80° выше темпера-

Рис. 4. Активность α-железа при дегидрогенизации изопропилового спирта

туры опыта. При определении энергии активации дегидрогенизации спирта на карбидированной поверхности железа регенерация катализатора проводилась *н*-бутаном в течение часа при температуре следующего опыта. Выделившиеся при реакции газы собирались в газометры с постоянным нижним уровнем, причем газы, выделившиеся за первые 10—15 минут, собирались в отдельный газометр. Для кинетических расчетов принимались во внимание скорости выделения газообразных продуктов между 15—25 минутами опыта, что соответствовало наиболее постоянной скорости выделения. Для жидкого конденсата измерялся показатель преломления.

В табл. 2 приведены результаты кинетических опытов по дегидрогенизации изопропилового спирта на а-железе.

Данные предварительных опытов, где время контакта составляло 11 часов, не использовались нами, так как при этом не наблюдалась воспроизводимость результатов. Данные, приведенные в табл. 2, показывают, что дегидрогенизация изопропилового спирта наблюдается в

178

узком интервале температур (от 240 до 280°). На рис. 4 показана скорость выделения газа в течение одного опыта при разных температурах.

Из рис. 4 видно, что реакция прекращается через 30—35 мин. и только в течение 10—25 мин. удается наблюдать равномерное выделение газа. Газообразные продукты реакции содержали водород, следы непредельных углеводородов, а также метан.

Рис. 5. Кажущаяся энергия активации дегидрогенизации изопропилового спирта: О а-железо; С — а-железо; Fe₂C <u>+</u> частично гидрированный

Поскольку регенерация катализатора проводилась водородом, естественно, возникал вопрос о процентном содержании водорода при реакции в общем составе газа. Для этого были сняты инфракрасные спектры поглощения жидких катализаторов (от опытов 32 и 33) на двулучевом спектрофотометре ИКФ-2 при толщине слоя 2µ в кюветах из КСІ. Ожидаемый продукт дегидрогенизации — ацетон обладает характерной полосой поглощения при 1708⁻¹ см, соответствующей карбонильной группе. Мы записали спектры поглощения стандартных растворов ацетона в изопропиловом спирте при содержании ацетона 2, 5, 7, 10, 20%. Значения оптической плотности $\lg I_0/I$ оказались зависящими линейно от процентного содержания ацетона. Был составлен график, из которого найдено содержание ацетона в катализатах из опытов 32 и 33 (8,5 и 6,5% соответственно).

По полученным кинетическим данным (табл. 2) была построена прямая в координатах $\lg v_{\rm HTA}$ и $1/T \cdot 10^4$ и графически вычислена величина є — кажущаяся энергии активации дегидрогенизации изопропи-

лового спирта на α-железе; было найдено, что ε равно 10,7 ккал/моль (рис. 5).

В отработанных образцах катализаторов было обнаружено до 30% карбида Хэгга. Воспроизводимость термомагнитных кривых для двух разных образцов катализаторов хорошая (рис. 6). Наличие карбида подтверждено рентгенографически. Мы пересчитали $\sin^2 \theta_{\rm Fe}$ в $\sin^2 \theta_{\rm Co}$ для сравнения с литературными данными. Значения d и hkl хорошо совпали с данными, опубликованными ранее Джеком [9], Хэг-

Рис. 6. Карбид Хэгга (точка Кюри 247 ± 5°) и а-железо (точка Кюри 789 ± 5°) после контакта с изопропиловым спиртом

гом [10] и Гофером [8]. Мы идентифицировали еще пять фракционных линий Fe₂C с малыми углами θ, так как разрешающая способность железного анода в этой области больше, но не обнаружили некоторых линий с большими углами θ.

Таким образом, дегидрогенизация изопропилового спирта при 200—280° на α-железе сопровождается образованием карбида Хэгга, который может быть прогидрирован при температурах 300—400°. Образованием и накоплением карбида, по-видимому, и объясняется изменение скорости выделения газов в течение одного опыта.

Совершенно логично возникает вопрос о поведении карбидированного катализатора в данной реакции. Для выяснения его был взят катализатор, карбидированный ранее *н*-бутаном при 325° в течение 22 часов и охарактеризованный с помощью рентгеновского и термомагнитного анализов. Чтобы полностью освободить катализатор от ацетона, под которым он ранее хранился, он был обработан *н*-бутаном сначала в течение 2 часов при 100°, а затем еще 6 часов при 325°. После этого были проведены кинетические опыты. Полученные данные приведены в табл. 2. Как видно из таблицы, температурный интервал работы этого катализатора выше (280—330°), активность в течение опыта остается постоянной, воспроизводимость результатов хорошая.

На рис. 7 показана прямая зависимость $\lg v_{\rm HTd}$, вычисленная по водороду, от $1/T \cdot 10^4$, из которой графически найдено значение є (18,7 ккал/моль).

Рис. 7. Кажущаяся энергия активации дегидрогенизации изопропилового спирта на карбидированном α-железе. *I* — α-железо, Fe₂C после дегидрогенизации изопропилового спирта (ε = 18,7 ккал/моль); *II* — α-железо, Fe₂C после предварительного взаимодействия с *н*-бутаном (ε = 17,0 ккал/моль)

Для проверки полученных данных была исследована каталитическая активность катализатора, предварительно карбидированного *н*-бутаном при 325° в течение 22 час. В табл. 2 приведены результаты кинетических опытов, которые подтверждают сходство катализаторов, полученных карбидированием *а*-железа изопропиловым спиртом и *н*-бутаном. На основании опытных данных был построен график зависимости $\lg v_{\rm HTД}$ по $1/T \cdot 10^4$ и вычислена кажущаяся энергия активации, равная 17,0 ккал/моль (рис. 7). Из термомагнитной кривой этого образца, полученного после контактирования изопропилового спирта с катализатором, предварительно карбидированным *н*-бутаном (рис. 8, кривая I), видно, что этот катализатор содержит свыше 75% карбида. После гидрирования этого катализатора водородом при 325° на нем

181

была проведена снова дегидрогенизация изопропилового спирта. Реакция протекала при более низких температурах (240—280°): катализатор действовал как чистое α-железо. Полученные данные сведены в

Рис. 8. Термомагнитные кривые α-железа, содержащего Fe₂C: *I* — после дегидрогенизации изопропилового спирта; *II* — частично восстановленного

табл. 2. Вычислена кажущаяся энергия активации, равная 11,0 ккал/моль (рис. 6). Судя по термомагнитной кривой (рис. 8, кривая *II*), содержание карбида Хэгга в катализаторе составляет 57%.

Обсуждение результатов

Все образцы, свойства которых исследовались в настоящей работе, являются сложными многофазными системами, содержащими α-железо, карбиды и окись железа. Это доказывается как рентгенограммами, так и термомагнитными анализами.

Попытка осуществить дегидрогенизацию *н*-бутана на α-железе, а также на окислах железа привела к отрицательным результатам, так как при температурах ниже 500° дегидрогенизация не происходит, а выше 500° наступает глубокий крекинг.

В работе исследовано взаимодействие *н*-бутана с металлическим железом и его окисями в широком температурном интервале (от 200 до 620°). Обнаружено образование низкотемпературных карбидов железа при 200—350°. Согласно Куммеру, Де-Витту и Эмметту [11] в случае карбидирования окисью углерода карбидирование металлического железа при 325° заканчивается через 18 часов. Мы проводили карби-

дирование а-железа *н*-бутаном в течение 20—22 часов при различных гемпературах и получили при этом частично карбидированные поверхности железа с содержанием Fe₂C до 20%, что было подтверждено термомагнитным анализом. Было найдено, что при карбидировании в течение 22 часов количество образовавшегося карбида возрастает в зависимости от температуры опыта. Так, если при температуре 200° образуется 4% карбида, то при 275° — около 9%, а карбидирование при 325° дает образец с содержанием карбида Хэгга 20% (см. рис. 1).

Гексагональный низкотемпературный карбид Fe₂C (точка Кюри 380°) нами не обнаружен.

Рис. 9. Термомагнитные кривые Fe₂C (I) и Fe₃C (II)

Низкотемпературная ректификация продукта дегидрогенизации *н*-бутаном показала наличие следов C₁, C₂, C₃ при основном содержании C₄. Однако количества этих фракций настолько незначительны, что проследить кинетику карбидообразования с помощью газового анализа не удалось. Наличие водорода и метана было доказано масс-спектрометрически.

Таким образом, было доказано, что дегидрогенизация *н*-бутана на α-железе сопровождается распадом его молекулы на углерод, водород и следы углеводородов C₁, C₂, C₃.

В результате карбидирования *н*-бутаном катализатора, состоящего из Fe₃O₄ с примесью α-железа, в том же температурном интервале (200—350°) в течение 16 часов в нем были обнаружены следы карбида Хэгга, образовавшегося при 327°. Это не противоречит литературным данным [6], где также указывается на возможность образования карбида при достаточном количестве восстановленного железа.

Известно, что при повышении температуры выше 600° наблюдается необратимый переход фазы менее устойчивой Fe₂C в более устойчивую Fe₃C, количество которой при повторных опытах остается постоянным. На рис. 9 показаны термомагнитные кривые для двух образцов катализатора. Первый образец (кривая I) нагревался до 800° и в нем обнаружен карбид Хэгга; второй образец (кривая II) нагревался повторно до 900°; при этом образовался цементит Fe₃C. Вопрос о том, идет ли дальше распад Fe₃C \rightarrow 3Fe + C в этих условиях нами не исследовался. Рентгенограммы образцов катализаторов, обработанных при 590°, не имели интерференционных максимумов, что свидетельствует о том, что углистые пленки на них были рентгеноаморфны. Следует отметить, что Гофман и Гролл [12], обрабатывая катализаторы, применяющиеся для синтеза аммиака, смесью окиси углерода (42%), углекислого газа (48%) и водорода (9,9%) при 585°, наблюдали образование графита.

Образование карбида Хэгга Fe₂C при дегидрогенизации изопропилового спирта на α-железе при 240—280° обнаружено впервые. Наличие его доказано методами рентгенографии, термомагнитного анализа и подтверждено масс-спектрометрическим анализом газообразных продуктов реакции. Метан, найденный при дегидрогенизации спирта, может образовываться в результате вырывания углерода из молекул спирта в момент карбидообразования или получаться при гидрировании карбида. Распад молекулы изопропилового спирта должен сопровождаться образованием окиси углерода, следы которой (не более 0,2— 0,4%) были нами обнаружены.

Количество карбида Хэгга возрастает в зависимости от времени контакта. Когда содержание карбида в катализаторе достигает определенной величины, что определяется свойствами исходного а-железа, а также температурой и свойствами молекулы, выбранной для карбидирования, скорость дегидрогенизации изопропилового спирта близка к нулю, следовательно, падение скорости дегидрогенизации связано с накоплением карбида.

Возникает два вопроса: участвует ли карбид Хэгга в дегидрогенизации спирта, и если нет, то чем можно объяснить различие в энергиях активации восстановленного и карбидированного железа. Дать однозначное решение этих вопросов в данной работе мы не смогли.

С равной вероятностью можно предположить как то, что α-железо обладает специфической активностью в изученной реакции, так и то, что карбид блокирует активные центры, осуществляющие дегидрирование спирта при более низкой температуре, но не влияет на менее активные центры железа, которые ответственны за дегидрогенизацию при более высокой температуре.

Выводы

1. Найдено, что дегидрогенизация *н*-бутана на α-железе и окислах железа при температуре выше 500° осложнена побочными процессами, сопровождающимися выделением водорода, непредельных углеводородов и образованием углерода.

2. Установлено, что при температурах 200—350° н-бутан взаимодействует с восстановленным α-железом и что при этом углерод внедряется в решетку объемноцентрированного кубического *а*-железа с об-

разованием орторомбического карбида Хэгга Fe₂C (точка Кюри 240-245°).

3. Произведены идентификация и количественное определение карбидов, полученных при контакте а-железа с н-бутаном, для чего использованы методы рентгеноструктурного, термомагнитного и химического анализов. Для анализа газообразных продуктов реакции был применен метод низкотемпературной ректификации на аппарате ЦИАТИМ, анализ на приборе ВТИ и масс-спектрометрический анализ.

4. Для сравнения каталитической активности восстановленного и карбидированного α-железа изучена дегидрогенизация изопропилового спирта. Было найдено, что на восстановленном катализаторе процесс идет при 240-280° (є=10,7 ккал/моль) и что при этом образуется карбид Хэгга. На α-железе, карбидированном при 325° н-бутаном, дегидрогенизация изопропилового спирта протекает наиболее гладко при 280-340° (ε=18,7 ккал/моль, ε=17,0 ккал/моль). При частичном гидрировании карбида Хэгга, образовавшегося на катализаторе, последний дегидрирует спирт при 230-280° (є = 11,0 ккал/моль), то есть приблизительно при той же температуре, что и восстановленное α-железо

Авторы пользуются случаем принести глубокую благодарность А. А. Баландину за интерес, проявленный к этой работе, Ю. П. Симанову, В. М. Грязнову, Ю. Б. Кагану, Р. Е. Мардалейшвили, которые помогли в решении ряда вопросов, связанных с данной работой.

ЛИТЕРАТУРА

- 1. Баландин А. А. ЖФХ, **16**, 782, 1946. 2. Баландин А.А., Кукина А. И., Шишова Д. П. ЖОХ,**32**, 882, 1958.
- 3. Emmett P. Catalyst, 3. N. Y. 1955, p. 475. 4. Podgurski H., Kummer J., De-Witt T., Emmett P. J. Amer. Chem.
- 5. Бокий Г. Б. Введение в кристаллохимию. Изд-во МГУ, 1954, стр. 247.
 6. Сторч Г., Голамбик Н., Андерсон Р. Синтез углеводородов из окиси. углерода и водорода. ИЛ, М., 1954.

7. Birnie S. Recueil trav. chim., Pays-Bas, 2, 273, 1883. 8. Hofer L., Gohn E., Peebles M. J Amer. Chem. Soc., 71, 189, 1949.

 Jack K. Proc. Roy. Soc. (London), 195A, 56, 1948.
 Hägg G. Z. Krist., 89, 92, 1934.
 Kummer J., De-Witt T., Emmett P. J. Amer. Chem. Soc., 70, 3632, 1948. 12. Hofmann U., Groll E. Z. anorgan. und allgem. Chem., 191, 414, 1930.

Поступила в редакцию 15. 4 1958 г.

Кафедра органического катализа и лаборатория катализа и газовой электрохимии