Вестник московского университета

№ 2 — 1959

can

A. M. KOMAPOB

ПРИМЕНЕНИЕ МЕТОДА ТИПА ГАЛЕРКИНА* ДЛЯ ИССЛЕДОВАНИЯ РАЗВИТИЯ ВОЗМУЩЕНИЙ ТЕЧЕНИЯ ВЯЗКОЙ ЖИДКОСТИ В ПЛОСКОМ КАНАЛЕ

Возможность применения метода Галеркина к решению задач гидродинамической устойчивости впервые была показана Г. И. Петровым [1]. В последующем этот метод успешно применялся в ряде работ ([2, 3] и др.), где исследуется поведение во времени возмущений, возникающих сразу во всем потоке, причем основное течение предполагается существенно одномерным.

В настоящей статье доказывается возможность применения метода типа Галеркина [4] для решения задачи об исследовании развития возмущений по потоку в двухмерном случае.

Пусть имеется течение вязкой несжимаемой жидкости в плоском канале шириной h, образованном двумя прямолинейными и параллельными стенками, простирающимися до бесконечности лишь в одну сторону. Начало оси x выберем в середине расстояния между концами стенок.

Пусть во входном поперечном сечении скорость по всей ширине канала одинакова и равна U_0 . На стенках должно выполняться условие прилипания u=v=0 при $y=\pm h/2,\ x>0$.

Пусть на это основное течение наложено двухмерное возмущающее движение, определяемое функцией тока $\psi(x, y, t)$ и давлением p'(x, y, t). Как основное, так и результирующее движение жидкости будем считать удовлетворяющим уравнениям Навье-Стокса. Наложенное возмущение будем считать "малым" в том смысле, что слагаемые в уравнениях Навье-Стокса для результирующего движения, содержащие произведения возмущающих величин, пренебрежимо малы по сравнению с остальными слагаемыми.

^{*} В литературе иногда этот метод называют методом Канторовича или просто методом с ведения к обыкновенным дифференциальным уравнениям.

Для искомой функции $\psi(x, y, t)$ получаем уравнение в безразмерной форме:

$$L(\psi) \equiv \frac{\partial \Delta \psi}{\partial t} - \frac{1}{R} \Delta \Delta \psi + u \frac{\partial \Delta \psi}{\partial x} + v \frac{\partial \Delta \psi}{\partial y} + F_1 \frac{\partial \psi}{\partial y} - F_2 \frac{\partial \psi}{\partial x} = f(x, y, t),$$
(1)

где u(x, y) и v(x, y) — скорости основного потока,

$$F_1 = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right)$$
, $F_2 = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right)$ и $R = \frac{U_0 \hbar}{v}$

при следующих граничных условиях:

$$\psi_{-} = \frac{\partial \psi}{\partial n} = 0$$
 на границе области $\Omega(x > 0, |y| < 1),$

$$\psi_{|t=0} = \psi_{0}(x, y). \tag{2}$$

Предполагается, что ψ и $\partial \psi / \partial x$ стремятся к нулю при $x \to \infty$. В уравнении (1) f(x,y,t) — известная функция, появляющаяся в результате сведения граничных условий при x=0 к нулевым.

Приближенное решение ищем в виде

$$\psi_n = \sum_{k=1}^n a_k(t) \cdot \chi_k(x, y),$$

где $\{\chi_k\}$ — полная система функций, удовлетворяющая условиям: $\chi_k = \partial \chi_k | \partial n = 0$ на границе Ω и при $x \to \infty$.

Применение метода типа Галеркина приводит к системе обыкновенных дифференциальных уравнений 1-го порядка:

$$\int_{\Omega} L(\psi_n) \cdot \chi_i d\Omega = \int_{\Omega} f \cdot \chi_i d\Omega. \quad i = 1, 2, ..., \quad n.$$
 (3)

Сложим уравнения системы (3), предварительно умножив их соответственно на $a_i(t)$, и результат проинтегрируем по t. Получим

$$\begin{split} \int_{Q} \psi_{n} \cdot \frac{\partial \Delta \psi_{n}}{\partial t} \ dQ \ - \ \frac{1}{R} \int_{Q} \psi_{n} \cdot \Delta \Delta \psi_{n} dQ \ + \\ + \int_{Q} \psi_{n} L_{1}(\psi_{n}) \ dQ = \int_{Q} \psi_{n} f dQ, \end{split}$$

где $Q=\Omega\cdot[0\leqslant t\leqslant T]$ — цилиндрическая область в пространстве $x,\ y,\ t$ и $L_1=u\frac{\partial\Delta}{\partial x}+v\frac{\partial\Delta}{\partial y}+F_1\frac{\partial}{\partial y}-F_2\frac{\partial}{\partial x}$.

Производя интеграцию по частям с учетом (2) и используя уравнение неразрывности для основного течения, из последнего соотношения можно получить следующие оценки:

$$\iint\limits_{Q} \left[\left(\frac{\partial \psi_n}{\partial x} \right)^2 + \left(\frac{\partial \psi_n}{\partial y} \right)^2 \right] dQ \leqslant F_1(T), \tag{4}$$

$$\int_{Q} \left[\left(\frac{\partial^{2} \psi_{n}}{\partial x^{2}} \right)^{2} + 2 \left(\frac{\partial^{2} \psi_{n}}{\partial x \partial y} \right)^{2} + \left(\frac{\partial^{2} \psi_{n}}{\partial y^{2}} \right)^{2} \right] dQ \leqslant RF_{2}(T). \tag{5}$$

Здесь

$$\begin{split} \boldsymbol{F}_{2}\left(T\right) &= e^{c_{3}T} \Bigg(c_{2} \int\limits_{0}^{T} \int\limits_{\Omega} e^{-c_{3}t} \, f^{2} \, dt d\Omega_{\mathfrak{g}}^{\mathbf{a}} + K_{1} \Bigg), \\ K_{1} &= \int\limits_{\Omega} \bigg[\bigg(\frac{\partial \psi_{\mathbf{0}}}{\partial x} \bigg)^{2} + \bigg(\frac{\partial \psi_{\mathbf{0}}}{\partial y} \bigg)^{2} \bigg] d\Omega, \\ F_{1}\left(T\right) &= \frac{1}{c_{3}} \Bigg[c_{2} \int\limits_{0}^{T} \int\limits_{\Omega} \left(e^{c_{3}\left(T-t\right)} - \frac{1}{\mathbf{b}} \mathbf{1} \right) f^{2} dt d\Omega + K_{1}\left(e^{c_{3}T} - \mathbf{1} \right) \Bigg]. \end{split}$$

Положительные константы c_2 и c_3 определяются через максимум модуля скорости основного потока c_1 .

Умножив уравнения системы (3) соответственно на $a_i'(t)$, после сложения и интеграции по t, получим соотношение

$$\int_{Q} \frac{\partial \psi_n}{\partial t} L(\psi_n) dQ = \int_{Q} \frac{\partial \psi_n}{\partial t} f dQ,$$

из которого, аналогично предыдущему, получаем следующую оценку:

$$\int_{Q} \left[\left(\frac{\partial^{2} \psi_{n}}{\partial t \partial x} \right)^{2} + \left(\frac{\partial^{2} \psi_{n}}{\partial t \partial y} \right)^{2} \right] dQ \leqslant F_{3}(T). \tag{6}$$

Здесь

$$\begin{split} F_3(T) &= c_4 F_1(T) + c_5 F_2(T) + c_6 \int\limits_Q f^2 dQ + \frac{1}{R} K_2, \\ K_2 &= \int\limits_2 \left[\left(\frac{\partial^2 \psi_0}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 \psi_0}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 \psi_0}{\partial y^2} \right)^2 \right] dQ. \end{split}$$

Положительные константы c_4 , c_5 и c_6 определяются через c_2 , c_3 и

 $\max(|F_1|, |F_2|) = M.$

Дифференцируя уравнения системы (3) по времени и умножая их соответственно сначала на $a_i'(t)$, а затем на $a_i''(t)$, подобным же образом получим еще одну группу оценок:

$$\iint_{\Omega} \left[\left(\frac{\partial^2 \psi_n}{\partial x \partial t} \right)^2 + \left(\frac{\partial^2 \psi_n}{\partial y \partial t} \right)^2 \right] d\Omega \leqslant F_2^*(T), \tag{7}$$

$$\int_{Q} \left[\left(\frac{\partial^{3} \psi_{n}}{\partial t^{2} \partial x} \right)^{2} + \left(\frac{\partial^{3} \psi_{n}}{\partial t^{2} \partial y} \right)^{2} \right] dQ \leqslant F_{3}^{*}(T). \tag{8}$$

Здесь

$$\begin{split} F_2^*(T) &= e^{c_3 T} \Biggl(c_2 \int\limits_Q^T \int\limits_{\Omega} e^{-c_3 t} \left(\frac{\partial f}{\partial t} \right)^2 dt d\Omega + K_1^* \Biggr), \\ F_3^*(T) &= \frac{c_4}{c_3} \Biggl[c_2 \int\limits_Q \left(e^{c_3 (T-t)} - 1 \right) \left(\frac{\partial f}{\partial t} \right)^2 dQ + \\ &+ K_1^* \left(e^{c_3 T} - 1 \right) \Biggr] + c_5 F_2^*(T) + c_6 \int\limits_Q \left(\frac{\partial f}{\partial t} \right)^2 dQ + \frac{1}{R} K_2^*, \end{split}$$

$$\begin{split} K_1^* &= \int_{\Omega} \left[\left(\frac{\partial^2 \psi_n}{\partial x \partial t} \right)^2 + \left(\frac{\partial^2 \psi_n}{\partial y \partial t} \right)^2 \right]_{t=0} d\Omega \leqslant \\ &\leqslant c_7 \int_{\Omega} \left[\left(\frac{\partial \Delta \psi_0}{\partial x} \right)^2 + \left(\frac{\partial \Delta \psi_0}{\partial y} \right)^2 \right] d\Omega + c_8 \int_{\Omega} \left[L_1 (\psi_0) - f_0 \right]^2 d\Omega, \\ K_2^* &= \int_{\Omega} \left[\left(\frac{\partial^3 \psi_n}{\partial x^2 \partial t} \right)^2 + 2 \left(\frac{\partial^3 \psi_n}{\partial x \partial y \partial t} \right)^2 + \left(\frac{\partial^3 \psi_n}{\partial y^2 \partial t} \right)^2 \right]_{t=0} d\Omega \leqslant \\ &\leqslant c_9 K_1^* + c_{10} \int_{\Omega} \left(\frac{\partial f}{\partial t} \right)_{t=0} d\Omega, \quad f_0 = f(x, y, 0). \end{split}$$

Положительные константы c_i определяются.

K полученным оценкам (4) — (8) следует добавить еще одно неравенство

$$\int_{Q} \psi_{n}^{2} dQ \leqslant 4 \int_{Q} \left[\left(\frac{\partial \psi_{n}}{\partial y} \right)^{2} + \left(\frac{\partial \psi_{n}}{\partial x} \right)^{2} \right] d\Omega, \tag{9}$$

неоднократно использовавшееся в промежуточных выкладках.

Неравенства (4)-(6), (8) и (9) позволяют утверждать, что множество $\{\psi_n\}$ принадлежит пространству $W_2^{(2)}(Q_1)$ с ограниченной

 $\|\psi_n\|_{W_2^{(2)}(Q_1)}$, а множество $\left\{\frac{\partial \psi_n}{\partial x_i}\right\}$, где $x_1=x$, $x_2=y$, $x_3=t$, принадлежит $W_2^{(1)}(Q_1)$ с ограниченной $\left\|\frac{\partial \psi_n}{\partial x_i}\right\|_{W_2^{(1)}(Q_1)}$. Здесь $Q_1=Q_1\times [0\leqslant$

t < T < Q для любой конечной области $\Omega_1 < \Omega$ в плоскости x, y. Из теорем вложения C. Л. Соболева [5] следует, что множество $\{\psi_n\}$ компактно в пространстве непрерывных функций C, а множество $\{\frac{\partial \psi_n}{\partial x_i}\}$ сильно компактно в L_{q^*} на любой плоскости измерения S. Здесь

 $q^* < 4$ и S=2. Это доказывает сходимость примененного нами метода в C для функции ψ и в $L_{q^*}(S)$ для ее производных.

Используя соотношение (7) и применяя теорему Арцела [5], мы получим равномерную сходимость по t для функции ψ в интервале $0 \ll t \ll T$.

Определим теперь обобщенное решение нашей задачи как функцию ф, удовлетворяющую следующему интегральному соотношению:

$$\int_{0}^{T} \int_{\Omega} \left\{ \left(\frac{\partial \varphi}{\partial t} + u \frac{\partial \varphi}{\partial x} + v \frac{\partial \varphi}{\partial y} \right) \Delta \psi + \frac{1}{R} \left(\frac{\partial^{2} \varphi}{\partial x^{2}} \cdot \frac{\partial^{2} \psi}{\partial x^{2}} + 2 \frac{\partial^{2} \varphi}{\partial x \partial y} \cdot \frac{\partial^{2} \psi}{\partial x \partial y} + \frac{\partial^{2} \varphi}{\partial y^{2}} \cdot \frac{\partial^{2} \psi}{\partial y^{2}} \right) + \left\{ F_{1} \frac{\partial \varphi}{\partial y} - F_{2} \frac{\partial \varphi}{\partial x} \right\} \psi + f \varphi d \Omega d t + \int_{\Omega} \Delta \varphi |_{t=0} \psi_{0} d \Omega = 0. \tag{10}$$

Здесь $\varphi(x,y,t)$ — произвольная функция, непрерывная вместе с первой производной по t и со вторыми производными по x и y, удовлетворяющая следующим условиям: $\varphi = d\varphi/dn = 0$ на границе Ω и $\Delta \varphi/_{t=0} \psi_0 d\Omega$.

Рассмотрим систему функций $\{\omega_i(t)\}$, полную в интервале $0 \leqslant t \leqslant T$, причем $\omega_i|_{t=T}=0$. Тогда система функций $\theta_j(x,y,t)=\omega_i(t)\,\chi_k(x,y)$ будет полной в пространстве (x,y,t). Поэтому

$$\varphi(x, y, t) = \sum_{j=1}^{\infty} c_j \theta_j(x, y, t),$$

причем

$$\varphi_N(x, y, t) = \sum_{i, k}^{N} c_{i, k} \omega_i(t) \chi_k(x, y)$$

и $\varphi_N \to \varphi$ при $N \to \infty$.

Фик сируем любое N < n. Умножим равенства (3) на $c_{ik}\omega_i(t)$ так, чтобы после суммирования получить

$$\int_{\Omega} \varphi_N L(\psi_n) d\Omega = \int_{\Omega} f \varphi_N d\Omega.$$

Проинтегрировав это соотношение по t, после несложных преобразований убеждаемся, что ψ_n удовлетворяет интегральному соотношению (10), где вместо φ стоит φ_N . Следовательно, этому же соотношению удовлетворяет и предел ψ любой сходящейся подпоследовательности $\{\psi_n\}$, существование которой доказано выше. Устремляя φ_N к пределу при $N \to \infty$, показываем, что предел ψ удовлетворяет интегральному соотношению (10) для любой функции φ . Этим доказано существование обобщенного решения нашей задачи.

Единственность решения следует из оценок (4) — (9), полученных для точного решения путем непосредственного умножения (1) на ϕ и $\partial \phi / \partial t$ с последующей интеграцией в области Q. При $\phi_0 = 0$ и f = 0

решение $\psi_1 - \psi_2 \equiv 0$.

В заключение автор считает своим приятным долгом принести благодарность акад. Г. И. Петрову за полезное обсуждение работы.

ЛИТЕРАТУРА

1. Петров Г. И. ПММ, нов. сер., т. 4, вып. 3, 1940.

Di Prima R. C. Quart. Appl. Math., 13, № 1, 1955 (русск. перев. Прима. Сб. перев. "Механика", № 3, 1956).

Архипов В. Н. Вестн. МГУ, сер. мат., мех., астрон., физ., химии, № 4, 1957.
 Канторович Л. В., Крылов В. И. Приближенные методы высшего анализа, 1949.

 Соболев С. Л. Некоторые применения функционального анализа в математической физике, 1950.

Поступила в редакцию 26. 12 1958 г.

Кафедра аэромеханики и газовой динамики