Becmhuk

МОСКОВСКОГО УНИВЕРСИТЕТА

№ 6 — 1962

Sur Sur

Н. Н. ДМИТРИЕВА, В. А. ДМИТРИЕВ

ИСКАЖЕНИЕ СПЕКТРА ИОНИЗАЦИОННЫХ ТОЛЧКОВ УСИЛИТЕЛЕМ

Проводится анализ искажений усилителем импульсов от цилиндрической ионизационной камеры, обусловленных различным распределением ионизации в камере. Приведены искажения соотношения амплитуд импульсов при различных соотношениях длительности импульсов и постоянных усилителя. Отмечаются большие амплитудные искажения, возникающие в усилителях с нелинейными амплитудными характеристиками.

При исследованиях спектра импульсов от ионизационной камеры необходимо знать искажения, вносимые радиотехническими устройствами. Часто принимается (например, в [1]), что электронные устройства не вносят искажений в форму импульсов и не меняют их амплитуды. Это допущение основывается на предположении о неограниченности полосы пропускания усилителя. Однако реальные усилители имеют конечную полосу пропускания, поэтому при точных измерениях необходимо учитывать вносимые ими искажения. В ряде задач важно только сохранение соотношения амплитуд импульсов, а не информация о характере распределения ионизации в камере, т. е. о форме импульсов. В этом случае требуется знать, как искажает усилитель спектр амплитуд импульсов. Такой анализ был проведен для импульсов от пропорционального счетчика [2]. Для цилиндрической ионизационной камеры был проведен [3] анализ амплитудных искажений импульсов только идеализированной (линейной) формы. В настоящей работе проводится анализ изменения соотношения амплитуд реальных импульсов от цилиндрической камеры при различном распределении ионизации после прохождения через усилитель. В работах [4] найдены формы электронных импульсов для случаев равномерной ионизации в камере, локальной ионизации у электродов, а также при ионизации по диаметру цилиндрической камеры. Форма импульсов (рис. 1) существенно отличается от линейной. Это делает невозможным использование для оценки амплитудных искажений результатов работы [3]. Обычно реостатноемкостный усилитель имеет одну дифференцирующую цепь с постоянной т₁, резко отличающейся от постоянных остальных цепей дифференцирования, и одну цепь интегрирования с постоянной т₂, большей других. Рассматривались различные соотношения длительности электронного импульса Т и постоянных т₁ и т₂. Усилитель с неограниченной полосой пропускания ($\tau_1 = \infty, \tau_2 = 0$) совершенно не искажает импульсов.

Нами были исследованы случаи усилителя с широкой полосой пропускания ($\tau_1 = 10 T$, $\tau_2 = 1/5 T$), усилителя с равными постоянными ($\tau_1 = \tau_2$) и некоторые промежуточные случаи выбора постоянных. Реакция усилителя на единичный скачок в случае размещения цепей с постоянными τ_1 и τ_2 в разных каскадах описывается выражениями

$$\varphi(t) = \frac{k\tau_1}{\tau_1 - \tau_2} \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right) \quad \text{и} \quad \varphi(t) = \frac{kt}{\tau} e^{-\frac{t}{\tau}} \quad \text{при } \tau_1 = \tau_2 = \tau.$$

При входном сигнале, форма которого описывается функцией $v_{\text{вх}}(t)$, форма выходного сигнала будет выражаться так:

$$v_{\text{BMX}}(t) = \int_0^t v'_{\text{BX}} \varphi(t-x) \, dx.$$

Интегрирование было произведено численно, так как форма входных сигналов не всегда имеет простое аналитическое выражение. На рис. 2 показана полученная форма выходных импульсов, обусловленных различным распределением ионизации, для усилителей с различными пара-

Рис. 1. Форма импульса от ионизационной камеры: 1—локальная ионизация; 2—объемная ионизация; 3—ионизация по диаметру.

Крестики соответствуют случаю $v = v_0$, точки — случаю $v = kE^{1/2}$

метрами. Разброс в амплитуде выходных сигналов (δ) и значения выходных амплитуд (v_{max}) приведены в таблице. Усилитель с равными постоянными, как известно [5], может иметь максимальное отношение сигнал/шум. Из таблицы видно, что такой усилитель при работе с цилиндрической ионизационной камерой обеспечивает 3%-ное разрешение по амплитуде при $\tau = T$, т. е. менее чем в два раза уступает усилителю с широкой полосой. Еще меньший разброс может быть получен для усилителя с равными постоянными, большими *T*. Однако в этих случаях фронт импульса после усилителя удлиняется в несколько раз. Это понижает возможное разрешение при работе со схемами совпадений и увеличивает задержку при работе с пороговыми схемами. При использовании усилителя с $\tau_1 = \tau_2 = T$ удлинение фронта импульса не превышает 10%. Однако применение усилителя с достаточным усилением на сравнительно низких частотах ($\tau_1 > T$) нежелательно, так как этоприводит к увеличению влияния микрофонного эффекта камер и наводок от сети переменного тока. Роль микрофонного эффекта особенновелика в больших камерах, наполненных аргоном, где время собирания электронов достигает десятков микросекунд. Кроме того, расширение полосы пропускания усилителя приводит к увеличению шумов. Оба эти фактора вызывают разброс амплитуд импульсов после усилителя, т. е. также ограничивают разрешение амплитуд импульсов в этих случаях. Очень существенным оказывается одновременное увеличение до *T* и постоянной интегрирования. Это и понятно: усилитель с $\tau_2 = T$ будет реа-

τ,	τ_2	Относительная амплитуда выходного сигнала $\left(\frac{v_{Bbx}}{kv_{Bx}}\right)$ при ионизации				δ, %	δ', %
		у цент- рального электрода	у внеш- него электрода	объемная	по диа- метру		
T T 10 T 10 T 2 T 4 T	$ \begin{array}{c} T \\ $	0,368 0,668 0,775 0,905 0,368 0,368	0,359 0,627 0,765 0,890 0,362 0,364	0,357 0,575 0,772 0,891 0,364 0,367	0,356 0,364 0,367	3,2 16,1 1,3 1,7 1,5 1,0	0, 69, 10, 90, 10, 50, 2

гировать на все сигналы с более быстрым нарастанием как на короткие толчки, аналогично баллистическому гальванометру. А в данном случае наибольший разброс амплитуд обусловлен как раз наличием крутого импульса, в свою очередь обусловленного ионизацией у центрального электрода. Разброс амплитуд остальных импульсов (δ') значительно меньше.

Как видно из таблицы, в обоих усилителях (с широкой полосой и с равными постоянными) будут относительно увеличиваться амплитуды импульсов, вызванных ионизацией у центрального электрода. В промежуточных случаях наблюдается и другое искажение спектра амплитуд. Так, если величина τ_1 усилителя была взята достаточно короткой, чтобы ослабить влияние микрофонного эффекта и наводок от сети, а при этом верхняя граничная частота высока, то разброс в амплитуде импульсов может достичь десятков процентов (30% при $\tau_2 = 1/10 T$ и $\tau_1 = T$).

Указанное явление может иметь место в случае применения для расширения диапазона пропускаемых амплитуд усилителей с нелинейной амплитудной характеристикой. В случаях, когда нелинейность характеристики усилителя обусловлена нелинейной обратной связью [6], при уменьшении усиления происходит отмеченное выше нежелательное расширение полосы пропускания только в сторону высоких частот. (Это происходит потому, что дифференцирование осуществляется в соединительных цепях, не охваченных обратной связью.) Чтобы этот эффект не вызвал резкого роста в разбросе амплитуд, особенно при скачкообразном резком изменении усиления, необходимо применение дополнительных каскадов.

Авторы выражают благодарность Г. Б. Христиансену за обсуждение полученных результатов.

ЛИТЕРАТУРА

1. Bridge, Hazen, Rossi, Williams. Phys. Rev., 74, 9, 1948; Росси и

Bridge, Hazen, Kossi, Williams, Phys. Rev., 74, 9, 1948; Росси и Штауб. Ионизационные камеры и счетчики. М., 1951.
 Hurst, Ritchie. Rev. Sci. Just., 24, 8, 1953.
 Gellespie A. Signal, Noise and Resolution in Nuclear Counter Amplifiers. Pergamon Press. 1953; Санин А. А. Электронные приборы ядерной физики. Физматиз, М., 1961.

4. Дмитриев В. А. ЖТФ. № 1, 1957; Сегпіодої С., Раиli G., Раіапі С. Nucl. Just., 2, 261, 1958. 5. Элмор. УФН, 39, № 1, 1949.

- 6. Неіпетап. Phys. Rev., 96, No. 1, 1954; Горюнов Н. Н. ПТЭ, № 3, 1959.

Поступила в редакцию 26. 2 1962 r.

Кафедра космических лучей