Весліник московского университета

№ 6 — 1962

- Cin

В. П. ГОРЬКОВ

ДИСПЕРСИОННОЕ УРАВНЕНИЕ ДЛЯ ОБЫКНОВЕННОЙ ВОЛНЫ, УЧИТЫВАЮЩЕЕ ВОЛНОВОЕ МАГНИТНОЕ ПОЛЕ

Рассматривается дисперфионное уравнение для обыкновенной волны, учитывающее волновое магнитное поле, для произвольной функции распределения электронов.

В однородной неограниченной плазме могут существовать два типа волн, распространяющихся поперек внешнего магнитного поля \hat{H}_0 : обыкновенная волна с электрическим вектором, поляризованным по \hat{H}_0 , и обыкновенная и плазменная волны, электрический вектор в которых перпендикулярен к \hat{H}_0 . Частота ω и постоянная распространения волны k связаны дисперсионным уравнением, получаемым с помощью системы уравнений Максвелла и кинетического уравнения. Обычно при исследовании дисперсионного уравнения функцию распределения электронов невозмущенного состояния считают максвелловской [1—2].

В настоящей работе исследуется дисперсионное уравнение обыкновенной волны для произвольной функции распределения электронов $f_0(v, u)$ (v — поперечный, u — продольный компоненты скорости электронов относительно магнитного поля \vec{H}_0), учитывающее волновое магнитное поле.

Дисперсионное уравнение для обыкновенной волны, распространяющейся поперек внешнего магнитного поля \vec{H}_0 , имеет вид:

$$k^{2} - \frac{\omega^{2}}{c^{2}} + \frac{\omega \omega_{0}^{2}}{\omega_{H} c^{2}} \left\{ \int_{0}^{2\pi} \int_{-\infty}^{+\infty} u \frac{\partial f_{0}}{\partial u} e^{-\frac{ikv \sin \vartheta}{\omega_{H}}} \sum_{n=-\infty}^{+\infty} I_{n} \left(\frac{kv}{\omega_{H}} \right) \times \frac{e^{in\vartheta}}{n - \omega/\omega_{H}} v dv du d\vartheta + \frac{1}{2} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{k}{\omega} \left(\frac{\partial f_{0}}{\partial v} u - v \frac{\partial f_{0}}{\partial u} \right) \times \frac{ikv \sin \vartheta}{n - \omega} \sum_{n=-\infty}^{+\infty} I_{n} \left(\frac{kv}{\omega_{H}} \right) \left[\frac{e^{i(n+1)\vartheta}}{n + 1 - \frac{\omega}{\omega_{H}}} + \frac{e^{i(n+1)\vartheta}}{n - \omega} \right]$$

$$+ \frac{e^{\lambda(n-1)\vartheta}}{n-1 - \frac{\omega}{\omega_H}} \left[vdvdud \vartheta \right] = 0.$$
 (1)

Здесь $\omega_H = \frac{eH_0}{mc}$ — ларморовская частота, $\omega_0 = \sqrt{\frac{4\pi N e^2}{m}}$ — плазменная частота электронов, ϑ — полярный угол в пространстве скоростей (ось z направлена вдоль магнитного поля \vec{H}_0 , ϑ — отсчитывается от оси x), $I_n\left(\frac{kv}{\omega_H}\right)$ — функция Бесселя.

В уравнении (1) второй интегральный член учитывает влияние магнитного поля. Этот член обращается в нуль, если распределение по скоростям изотропно, т. е. $f_0(v, u) = f_0(v^2 + u^2)$. В этом случае дисперсионное уравнение (1) принимает вид

$$G(k, \omega) = k^{2} - \frac{\omega^{2}}{c^{2}} - \frac{\omega\omega_{0}^{2}}{\omega_{H}c^{2}} 2\pi \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f_{0} \times \frac{I_{n}^{2} \left(\frac{kv}{\omega_{H}}\right)}{n - \frac{\omega}{\omega_{H}}} v \, dv \, du = 0.$$

$$(2)$$

Мы будем рассматривать такое дисперсионное уравнение, в котором по известному волновому числу k нужно определить частоту ω . Покажем, что уравнение (2) при заданной вещественной постоянной распространения k не имеет комплексных корней $\omega(k)$. Для этого, как и в работе [1], воспользуемся принципом аргумента, который состоит в следующем: если функция $G(k,\omega)$ аналитична в области D комплексного переменного ω всюду, кроме конечного числа особых точек типа полюса, и не обращается в нуль на границе области C, то изменение аргумента $C(k,\omega)$ при обходе контура C в положительном направлении, деленное на 2π , равняется разности между числом нулей и полюсов функции $G(k,\omega)$ в области D:

$$N - P = \frac{1}{2\pi} var (\arg G(k\omega)). \tag{3}$$

На плоскости комплексного переменного ω рассмотрим круг D_m радиуса $R_m = \left(m + \frac{1}{2}\right) \omega_H$, где m — достаточно большое целое число. На окружности C_m такого радиуса

$$\left| \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f_{0} \sum_{n=-\infty}^{+\infty} \frac{I_{n}^{2} \left(\frac{kv}{\omega_{H}} \right)}{n - \frac{\omega}{\omega_{H}}} v \, dv \, du \right| \leqslant$$

$$\leqslant \int_{0}^{+\infty} \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} 2I_{n}^{2} \left(\frac{kv}{\omega_{H}} \right) v \, dv \, du =$$

$$= 2 \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f_{0} v \, dv \, du \leqslant \text{const}$$

$$\sum_{n=-\infty}^{+\infty} I_n^2(x) = 1.$$

Тогда при достаточно большом m вариация аргумента $G(k,\omega)$ при обходе по окружности C_m будет определяться членом — $\frac{\omega^2}{c^2}$. Она равна $\frac{1}{2\pi}$ $var \times \left(\arg - \frac{\omega^2}{c^2}\right) = 2$.

Внутри круга D_m функция имеет 2m полюсов первого порядка в точках $\omega=\pm n\omega_H~(n=1,2,\ldots,m)$. Поэтому согласно (3) общее число корней дисперсионного уравнения (2) в области D_m будет равно

$$N_m = P_m + \frac{1}{2} var(\arg G(k, \omega)) = 2m + 2.$$
 (4)

Подсчитаем число действительных нулей функции $G(k,\omega)$ в области D_m . На интервале $(n\omega_H,(n+1)\omega_H)$, где n— любое целое число, $G(k,\omega)$ является непрерывной и на концах имеет разные знаки:

$$G(k, n \omega_H + 0) > 0$$
, $G(k, (n+1) - 0 < 0$ при $n \ge 0$, $G(k\omega_H + 0) < 0$, $G(k, (n+1) (\omega_H - 0) > 0$ при $n < 0$. (5)

Следовательно, на таком интервале $G(k,\omega)$ имеет нечетное число вещественных корней. В области D_m находится 2m интервалов. Значит, на каждом из них имеем только один вещественный корень, ибо в противном случае не будет выполнено равенство (4). Таким образом, на интервале $(-m\omega_H, +m\omega_H)$ уравнение (2) имеет 2m действительных корней. Оставшиеся два корня должны располагаться на интервалах $\left(-\left(m+\frac{1}{2}\right)\omega_H, -m\omega_H\right)$ и $\left(m\omega_H, \left(m+\frac{1}{2}\right)\omega_H\right)$, поскольку появление комплексного корня $\omega(k)$ означает существование четырех корней $(\omega(k), -\omega(k), \omega^*(k), -\omega^*(k))$, что противоречит (4). Итак, доказано, что дисперсионное уравнение (2) при действительном волновом числе k не имеет комплексных корней (k) и на каждом интервале $(n\omega_H, (n+1)\omega_H)$ существует один действительный корень. При неизотропном распределении по скоростям дисперсионное уравнение (1) приводится к виду

$$G(k, \omega) = k^{2} - \frac{\omega^{2}}{c^{2}} + \frac{\omega_{0}^{2}}{c^{2}} - \frac{\omega_{0}^{2}}{c^{2}} \int_{-\infty}^{+\infty} u^{2} f_{0}(0, u) du + \frac{\omega_{0}^{2}}{\omega_{H}c^{2}} 2\pi \int_{-\infty}^{+\infty} u^{2} \frac{\partial f_{0}}{\partial v} \int_{n=-\infty}^{+\infty} \frac{I_{n}^{2} \left(\frac{kv}{\omega_{H}}\right)}{n - \frac{\omega}{\omega_{H}}} dv du = 0.$$
 (6)

Если $f_0(v, u)$ — монотонно убывающая по переменной v функция распределения, то на интервале $(n\omega_H, (n+1)\omega_H)$, где — любое целоечисло, справедливы неравенства (5). Поэтому аналогично предыдуще-

му случаю, можно доказать, что дисперсионное уравнение (6) нри любом действительном k не имеет комплексных корней $\omega(k)$ и на каждом интервале $(n\omega_H,\ (n+1)\omega_H)$ находится один действительный корень.

Если функция $f_0(v, u)$ не удовлетворяет указанному ограничению, то соотношения вида (5) доказать не удается. Поэтому данный метод не позволяет сделать общих выводов о характере корней дисперсионного уравнения (6).

В заключение выражаю глубокую благодарность Д. П. Костома-

рову и Ю. Н. Днестровскому за помощь при выполнении работы.

ЛИТЕРАТУРА

1. Днестровский Ю. Н., Костомаров Д. П. ЖЭТФ, **40**, 1404, 1961. 2. Гордеев Г. В. ЖЭТФ, **24**, 445, 1953.

Поступила в редакцию 16. 3 1961 г.

Кафедра статистической физики и механики