Вестник московского университета

№ 1-1963

Ш. ШАРИПОВ

К ТЕОРИИ ВРАЩАТЕЛЬНЫХ СОСТОЯНИЙ НЕЧЕТНЫХ ЯДЕР С МАЛОЙ НЕАКСИАЛЬНОСТЬЮ

Вычислена зависимость энергетического спектра возбужденных состояний нечетных ядер, имеющих в основном состоянии спин равный ⁵/₂ и ⁷/₂, от отношения энергии вращения к энергии связи «внешнего нуклона» с несферической частью потенциала остова ядра.

В работе Давыдова и Сардаряна [1] рассматривались вращательные состояния нечетных ядер с малой неаксильностью. Отношения энергии вращения к энергии связи «внешнего нуклона» с несферической частью потенциала остова ядра определялись из уравнения Шредрингера с гамильтонианом

$$H = H_p + H_r + U_{int}.$$
 (1)

Здесь *H*_p — оператор Гамильтона внутреннего состояния остова ядра и внешнего нуклона в центрально-симметричном поле,

$$H_r = \frac{\hbar^2}{8B\beta^2} \sum_{\lambda} \frac{(\hat{l}_{\lambda} - \hat{j}_{\lambda})^2}{\sin^2\left(\gamma - \frac{2\pi}{3}\lambda\right)}$$
(2)

есть оператор энергии вращения, где I_{λ} , j_{λ} — соответственно проекции операторов полного спина ядра и внешнего нуклона на оси координат, связанные с ядром:

$$H_{int} = -T\beta \{\cos\gamma (3\hat{j}_3^2 - \hat{j}_2^2) + \sqrt{3}\sin\gamma (\hat{j}_1^2 - \hat{j}_2^2)\}$$
(3)

есть оператор, учитывающий несферическую часть поля остова ядра. В работе [1] было показано, что последовательности спинов возбуж-

денных состояний и отношения их энергий определяются одним параметром ξ, соответствующим отношению энергии вращения к величине энергии связи «внешнего нуклона» с несферической частью потенциала остова ядра. В этой работе исследовался случай ядер, имеющих положительный собственный квадрупольный момент, т. е. когда остов представляет собой вытянутый эллипсоид вращения, параметр ξ принимает только положительные значения. Для ядер с отрицательным квадрупольным моментом параметр ξ должен иметь отрицательное значение.

Результаты вычислений для случая ядер, у которых в основном состоянии спин равен ⁵/₂ и ⁷/₂, изображены на рисунках 1 и 2. При поль-

зовании рисунком следует отсчитывать энергию от первой линии, соответствующей спину 5/2 и 7/2 основного состояния ядра. При $\xi < -0,25$ спектр возбужденных состояний, как в случае положительной ξ , разбивается на три полосы.

В таблицах 1 и 2 приведены теоретические и экспериментальные значения спинов и энергий уровней нечетных ядер Gd¹⁰⁹ и I¹³¹.

Рис. 1. Зависимость от параметра § относительных значений энергий уровней нечетного ядра, имеющего в основном состоянии спин, равный 5/2

Рис. 2. Зависимость от параметра § относительных значений энергии уровней нечетного ядра, имеющего в основном состоянии спин, равный 7/2

Как показывает эксперимент, ядра I¹³¹ действительно обладают отрицательными собственными квадрупольными моментами, равными — 0,35 · 10⁻²⁴ см² [3]. Это говорит в пользу нашей теории, дающей теоретическое значения энергий возбужденных состояний этого ядра. Более полное сопоставление теории и эксперимента можно провести тогда, когда будут измерены спины возбужденных состояний, которые можно сравнить с предсказанными теорией.

Вероятности электромагнитных переходов между возбужденными состояниями

Волновая функция стационарных состояний ядра имеет вид

$$\Psi_{I\tau} = \sum_{K,\Omega} \left| IjK\Omega > A_{K\Omega}^{I\tau}, \right|$$
(4)

39

где
$$|IjK\Omega> = \left(\frac{2I+1}{16\pi}\right)^{1/s} \{D^I_{MK} \varphi^j_{\Omega} + (-1)^{I-j} D^I_{M,-K} \varphi^j_{-\Omega}\}$$

В случае ядер с малой неаксиальностью приведенная вероятность перехода квадрупольного излучения выражается через коэффициенты $A_{\kappa}^{I\tau}$ с помощью формулы [1]

$$B(E2; \ I\tau \to I'\tau') = \frac{5e^2 Q_0^2}{16\pi} \left| \sum_K A_K^{I'\tau'} A_K^{I\tau} \left(2I0K \,|\, I'K \right) \right|^2, \tag{5}$$

111 1127 3

Таблица 2

где e — единичный электрический заряд, Q_0 — внутренний квадрупольный момент ядра.

Таблица 1

Теория (ξ = -0,60)		Эксперимент [2]		Теория (ξ = — 0,54)		Эксперимент [3-4]	
3	1911		Sec. 1	7/2	0	7/2	0
5/2	0	5/2	0	3/2	51	1.	51
10	20		50	11/2	178	× +	147
1/2	58	1/2	58	1/2	389		_
9/2	207	7/2	205	5/2	421	1/21	FOF
12			-00	3/2	099 625 5	1	999
3/2	284	3/2	285	7/2	911	<u> </u>	920
710	E99	1 11 11	E20	5/2	978		520
1/2	000	1.	550	5/2	1296	1	_
3/2	635	7/2	632	11/2	1393	1000	1
		No. No		9/2	1474	1- 12	1490
5/2	720		+ /	7/2	1506	-	A -
1.3.0	5	12	015		124-	1 	1770
Tree			510	9/2	1958	-	
5/2	1152		1150	7/2	2036		2040
1		and and a second second		11/2	2140		-

Для, вычисления вероятности магнитного дипольного перехода будем исходить из выражения для оператора магнитного момента

$$\mathfrak{M}(1\nu) = (-1)^{\nu} \sqrt{\frac{3}{4\pi}} \, \mu_0 \left(g_j - g_R \right) \, \sum_{\mu = -1}^1 D^{\dagger}_{\nu\mu} \hat{j}_{\mu}, \tag{6}$$

где μ_0 — ядерный магнетон, g_j и g_R — соответственно гиромагнитные отношения для однонуклонного и коллективного движений.

С помощью функции (4) и оператора (6) легко вычислить приведенные вероятности дипольного магнитного перехода [1]

$$B(M1; I\tau \to I'\tau') = \left(\frac{3}{4\pi}\right) \mu_0^2 (g_j - g_R)^2 j(j+1) \times \\ \times \left| \sum_{\mu,K} (-1)^{\mu} A_{K+\mu}^{I'\tau'} A_K^{I\tau} (jK+\mu | jK) \, 1I\mu K \, | \, I'K+\mu) - \right. \\ \left. - (-1)^{I-j} A_{I_{/2}}^{I'\tau} A_{i_{/2}}^{I\tau} (j1, -\frac{1}{2}1 \, | \, j^{1}/_2) \left(1I, -\frac{1}{2} \, | \, I', -\frac{1}{2} \right) \right|^2.$$
(7)

40

В выражении (7) в сумме по μ , K следует при $\mu = 0$ и 1 проводить суммирование по всем положительным значениям K, а при $\mu = -1$ — только по значениям $K \ge 3/2$. Зная энергии уровней $E_{I\tau}$, можно вычислить коэффициенты $A_k^{I\tau}$. Нами были вычислены значения этих коэффициентов для состояний I = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, а затем по формулам (5) и (6) вычислялись приведенные вероятности электромагнитных переходов между этими состояниями.

В таблицах 3 и 4 приведены рассчитанные значения приведенных вероятностей квадрупольного электрического и дипольного магнитного

Таблица З

Приведенные	вероятности	<i>E</i> 2- и <i>M</i> 1-переходов для ядер с $\xi = -0,60$ меж	кду
		состояниями $I\tau \rightarrow I'\tau'$	

лори .5 10	П /т -	lepexoд —→ /′т′	$\frac{B(E2)}{e^2 Q_0^2}$	$\frac{B(M1)}{\mu_0^2 (g_j - g_R)^2}$
10.20	1/0.1	5/0.1	0.048	tages of the distribution
	1/2 1	$\frac{5}{2}$ 1	0,048	
	9/2 1	5/2 1	0,020	0 014
	3/2 1	5/2 1	0,0245	0,214
	7/2 1	5/2 1	0,0061	0,114
	3/2 1	1/2 1	0,0083	0,0315
	7/2 1	9/2 1	0,0051	0,431
	7/2 1	3/2 1	0,0163	—
	$5/2\ 2$	5/2 1	0,0024	0.134
	3/2 2	5/2 1	0,00002	0.0114
	3/2 2	1/2 1	0.0102	0.0376
	5/2 2	7/2 1	0.0148	0.5652
	5/2 2	1/2 1	0.0032	
	5/2 2	3/2 1	0,0092	0 2774
	5/9 9	9/2 1	0.00004	
	5/2 2	3/2 2	0,0159	0,2266

Таблица 4

Приведенные вероятности *E2*- и *M*1-переходов для ядер с $\xi = -0,54$ между состояниями $I\tau \rightarrow I'\tau'$

$ \begin{matrix} \Pi e pexon \\ I \tau & \longrightarrow & I' \tau' \end{matrix} $	$\frac{B(E2)}{e^2 Q_0^2}$	$\frac{B(M1)}{\mu_0^2(g_j - g_{R_i})^2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 0,0697\\ 0,0247\\ 0,0103\\ 0,0052\\ 0,0346\\ 0,0089\\ 0,0062\\ 0,00012\\ 0,0071\\ 0,0112\\ 0,0071\\ 0,0112\\ 0,0002\\ 0,0051\\ 0,000075\\ 0,000002\\ 0,0000008\\ 0,0093\\ \end{array} $	$\begin{array}{c}$

переходов между возбужденными состояниями ядер, имеющих спин основного состояния 5/2, 7/2 и соответственно значения $\xi = -0,60$, $\xi = -0.54.$

На основании вычислений можно сделать следующий вывод: у нечетных ядер с отрицательными собственными квадрупольными моментами нижайшие возбужденные состояния не образуют простую бор-моттельсоновскую вращательную полосу.

В заключение отметим, что в наших расчетах не были учтены адиабатические поправки на вращательные состояния.

Автор выражает искреннюю благодарность профессору А. С. Давыдову за интерес к работе.

ЛИТЕРАТУРА

1. Давыдов А. С., Сардарян Р. А. ЖЭТФ, 40, 1429, 1961. 2. Джелепов Б. С., Пекер П. К. Схемы распада радиоактивных ядер. Изд-во АН СССР, М., 1958.

3. Strominger D., Hallander I. M., Slabard G. T. Rev. Mod. Phys., 30, 585, 1958.

4. Nebl E. Phys. Rev., 97, 987, 1955.

Поступила в редакцию 17. 5 1962 г.

Кафедра электродинамики и квантовой теории