Beemhuk

МОСКОВСКОГО УНИВЕРСИТЕТА

№ 3—1968

УДК 537.533.35

н. н. седов, г. в. спивак, в. г. дюков

ТЕОРИЯ КОНТРАСТА ИЗОБРАЖЕНИЯ МИКРОПОЛЕЙ В ЭМИССИОННОМ ЭЛЕКТРОННОМ МИКРОСКОПЕ

Дается решение общей задачи о величине контраста для произвольных электрических микрополей при их наблюдении в эмиссионном электронном микроскопе, дается также решение обратной задачи, т. е. вычисление потенциального рельефа на отображаемой поверхности по известному контрасту его изображения.

В настоящей работе дается решение общей задачи о величине контраста для произвольных электрических микрополей при их наблюдении в эмиссионном электронном микроскопе, а также дается решение обратной задачи, т. е. вычисление потенциального рельефа на отображаемой поверхности по известному контрасту их изображения.

В ряде работ было ранее показано, что в эмиссионном электронном микроскопе могут наблюдаться приповерхностные электрические и магнитные микрополя [1, 2]. При этом способ формирования контраста изображения микрополей существенно зависит от наличия апертурной диафрагмы. В отсутствие последней контраст обусловлен лишь перераспределением электронов над поверхностью при сохранении их полного потока. Этот случай рассмотрен в работе [2]. При наличии же диафрагмы контраст создается за счет срезания ею электронных лучей, отклоненных от нормальных траекторий микрополями [1, 3, 4]. При этом возможны как светлопольный, так и темнопольный методы наблюдения микрополей [1]. Частично эти результаты были затем повторены в [5].

При отображении микрополей, как это показано в [1], а затем и в [5], наблюдаемые размеры микрополей могут превышать истинные вследствие расплывания области поля над образцом. В работе [5] утверждается, что вследствие этого невозможно с помощью эмиссионного микроскопа определить истинные размеры области микрополя. Однако это не так, поскольку поле в пространстве над образцом однозначно определяется краевыми условиями, т. е. потенциальным рельефом образца. Это и дает возможность, как показано ниже, однозначно определять величину и напряженность микрополей непосредственно на поверхности образца.

Нами уже была решена частная задача о контрасте для случая отображения поля *p*—*n*-перехода, наблюдаемого в эмиссионном микроскопе [3]. Более общая задача решается при следующих предположениях.

Отображаемая поверхность является плоской и плотность эмиссии с нее постоянная, т. е. предполагается, что контраст обусловлен только действием электрических микрополей на поверхности.

Напряженность однородного ускоряющего поля над исследуемой поверхностью намного превышает напряженность микрополей. Рассматривается иммерсионный объектив, в котором разделены области равномерного ускоряющего поля и линзы (рис. 1).

Рис. 1. Схема формирования контраста при наличии апертурной диафрагмы: К--катод иммерсионного объектива, А-экран, E_0 -- однородное ускоряющее поле, L--- линза, D_1 -- апертурная диафрагма, Р--- микрополе

Задачу разделим на два этапа.

1. Нахождение зависимости между микрополями на поверхности и отклонением электронного пучка в результате их действия в плоскости апертурной диафратмы.

2. Связь между отклонением пучка и яркостью соответствующего участка изображения на экране микроскопа.

Расчет кривых контраста

В работе [3] нами было показано, что при боковом отклонении пучка в плоскости кроссовера на величину *s* яркость изображения данного участка выражается формулой

$$i = \frac{i_0}{\pi h^2} \int_0^{r_0} \int_0^{2\pi} \exp\left\{-\frac{r^2 + s^2 - 2rs\cos\varphi}{h^2}\right\} r dr d\varphi.$$
(1)

Здесь i_0 — ток с соответствующего участка катода, $h = f \sqrt{\frac{V_T}{V_0}}$ — радиус кроссовера, где f — фокусное расстояние объектива, V_T — наиболее вероятная энергия выхода электронов, выраженная в вольтах, V_0 — анодное напряжение прибора, r_0 — радиус апертурной диафрагмы.

Этот интеграл выражает величину тока, прошедшего через диафрагму радиуса r_0 , когда кривая гауссовского распределения плотности тока в кроссовере сдвинута на величину *s* от центра диафратмы (рис. 2).

5 ВМУ № 3, физика, астрономия

Для отклонения s = 0 из (1) получаем

$$i_1 = i_0 \left\{ 1 - \exp\left(-\frac{r_0^2}{h^2}\right) \right\}.$$
 (2)

Нас интересует контраст изображения, т. е. отношение величин токов $I = \frac{i}{i_1}$; введем также величины $R = \frac{r_0}{h}$, $S = \frac{s}{h}$ и $\rho = \frac{r}{h}$.

Тогда выражение (1) приводится к виду

$$I(R, S) = \frac{e^{-S^2}}{\pi (1 - e^{-R^2})} \int_0^R \int_0^{2\pi} e^{2\rho S \cos \varphi} \rho e^{-\rho^2} d\rho d\varphi.$$
(3)

Рис. 2. К расчету тока, прошедшего через апертурную диафрагму. r₀ — радиус апертурной диафрагмы, s — смещение кривой распределения плотности электронов. Последнюю следует понимать как колоколообразную объемную поверхность Этот интеграл, выражающий кочтраст изображения, был вычислен на электронной вычислительной машине IBM-1620 Института ядерных исследований Алжира¹. Графически полученные кривые контраста представлены на рис. 3, а в таблице даны численные значения этой функции для различных значений S и R.

Кривая R=0 (рис. 3) соответствует малым апертурным диафрагмам $r_0 \ll h$. При неограниченном увеличении радиуса диафрагмы $R \rightarrow \infty$ контраст исчезает, как и следовало ожидать (предполагаем эмиссию катода однородной).

Из рис. З видно, что кривые контраста для $R \leq 0.5$ практически совпадают с кривой для R = 0 и, таким образом, не зависят от значения R. В то же время это

(4)

самый интересный для практики случай, так как для улучшения разрешающей способности прибора используются диафрагмы малого радиуса.

Для этого случая мы можем использовать аналитическое выражение

$$U = \exp\left(-S^2\right).$$

R	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
0 0,5 1,0 2,0 3,0 4,0 5,0	1,000 1,000 1,000 1,000 1,000 1,000 1,000	0,779 0,802 0,863 0,979 0,999 1,000 1,000	0,368 0,413 0,547 0,893 0,996 1,000 1,000	0,105 0,136 0,245 0,704 0,975 0,999 1,000	0,018 0,029 0,075 0,436 0,899 0,997 1,000	0,002 0,004 0,015 0,197 0,720 0,978 0,999	0,000 0,000 0,002 0,061 0,456 0,905 0,997	0,000 0,012 0,209 0,730 0,979	0,002 0,065 0,465 0,909	0,000 0,013 0,215 0,736	0,002 0,068 0,471

¹ Авторы выражают благодарность Ж. Пуже, составившему программу решения.

Полученные кривые контраста позволяют определить локальную яркость изображения по данному отклонению электронов S в плоскости кроссовера. Обратно, при известной картине контраста на экране прибора, по кривым контраста можно определить отклонение электронов, вызвавшее данное потемнение.

Рис. 3. Кривые контраста, S=s/h — смещение электронного пучка от центра диафрагмы, $J=i/i_1$ — относительная величина тока, прошедшего через диафрагму, $R=r_0/h$ — приведенная величина радиуса апертурной диафрагмы

Распределение электрического поля в пространстве вблизи поверхности катода

Для расчета траекторий электронов, вылетевших с поверхности катода, необходимо знание распределения поля в пространстве вблизи катода. Оно дается решением задачи Дирихле для полупространства. Предположим потенциал поверхности катода известной функцией $\varphi(x)$ (для двухмерного случая) при $\varphi(x, y)$ (трехмерная задача); здесь плоскость (x, y) представляет собой поверхность катода. При этом предполагаем потенциал $\varphi(x)$ или $\varphi(x, y)$ ограниченным на бесконечности, а его производные стремящимися к нулю.

Решение задачи находится методом потенциала двойного слоя или методом функции Грина. В случае трехмерной задачи распределение поля в пространстве дается выражением

$$V(x, y, z) = \frac{z}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\varphi(x - \xi, y - \eta) d\xi d\eta}{(\xi^2 + \eta^2 + z^2)^{3/2}}.$$
 (5)

Соответствующее выражение для двухмерной задачи будет

$$V(x, z) = \frac{z}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(x-\xi) d\xi}{z^2 + \xi^2}.$$
 (6)

При наличии однородного поля E_0 , нормального к поверхности катода, к этим выражениям следует прибавить величину $E_0 z$.

[67

5*

Расчет отклонения электронов под действием прикатодных полей

Как нами уже отмечалось в работе [3], отклонение S в плоскости кроссовера вызывается угловым отклонением электронов под действием микрополей, причем эта зависимость выражается формулой

$$S = \frac{s}{h} = \frac{f \, \mathrm{tg} \, a}{h}, \tag{7}$$

где f — фокусное расстояние иммерсионного объектива микроскопа, α — угол отклонения электронов по отношению к оси z.

Для расчета угла а предположим, что электрон выходит с поверхности катода с нулевой начальной скоростью и его движение по оси z равномерно-ускоренное под действием поля E_0 (имея в виду, что

$$\left|\frac{\partial V}{\partial z}\right| \ll E_0 \quad \text{H} \left|\frac{\partial V}{\partial x}\right| \ll E_0 :$$

$$z = \frac{e}{2m} E_0 t^2. \tag{8}$$

Поскольку при сделанных предположениях смещение электронов в направлении оси x невелико в области эффективного действия микрополей $\Delta x \ll \Delta$, где Δ — порядок величины протяженности микрополей, считаем, что в этой области координата электрона x остается равной координате его выхода: $x = x_0$.

Приращение скорости в направлении оси x, приобретаемое электроном на участке от z до z + dz, будет

$$dx = \frac{e}{m} \frac{\partial V}{\partial x} dt = \frac{\partial V}{\partial x} \sqrt{\frac{e}{2mE_0 z}} dz,$$

откуда

$$\dot{x} = \sqrt{\frac{e}{2mE_0}} \int_0^z \frac{\partial V}{\partial x} \cdot \frac{dz}{\sqrt{z}}.$$

Заменяя верхний предел интегрирования бесконечностью и принимая, что ускоряющее напряжение микроскопа равно V₀, получаем

$$\operatorname{tg} \alpha = \frac{\dot{x}}{\dot{z}} = \frac{1}{2\sqrt{E_0V_0}} \int_0^\infty \frac{\partial V}{\partial x} \frac{dz}{\sqrt{z}}.$$
 (9)

Вводя еще соотношение

$$l = \frac{V_0}{E_0},\tag{10}$$

где *l* — параметр данного иммерсионного объектива, получаем для отклонения в плоскости кроссовера

$$S = \frac{s}{h} = \frac{s}{f} \sqrt{\frac{V_0}{V_T}} = \operatorname{tg} \alpha \sqrt{\frac{V_0}{V_T}}$$

или, после подстановки выражения (9):

$$S = \frac{\sqrt{l}}{2\sqrt{V_0V_T}} \int_0^\infty \frac{\partial V}{\partial x} \cdot \frac{dz}{\sqrt{z}}.$$
 (11)

Аналогичное выражение можно написать для отклонения по оси у. Введем в формулу (11) значения потенциала, определяемые соотношениями (5) или (6); затем меняем порядок интегрирования и производим интегрирование по z; в результате для двухмерного случая получаем

Рис. 4. Кривые контраста, рассчитанные для несимметричного *р*—*п*-перехода. 1— *S*_{max} = 0,49, 2—*S*_{max} = 0,98, 3—*S*_{max} = 1,97, 4—*S*_{max} = 3,16, 5—*S*_{max} = 4,94 Соответствующее решение для трехмерной задачи получается в виде

$$S_{x}(x, y) = \frac{\sqrt{l} \sqrt{\pi}}{2 \sqrt{V_{0}V_{T}} [\Gamma(1/4)]^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d\varphi(x-\xi, y-\eta)}{\partial x} \frac{d\xi d\eta}{[\xi^{2}+\eta^{2}]^{3/4}}.$$
 (13)

Здесь $S_x(x, y)$ — смещение электронного пучка в плоскости кроссовера по направлению оси x. Пюскольку аналогичную формулу можно написать для отклонения по оси y, можно также выразить результат и в векторной форме:

$$\vec{S}(x, y) = \frac{\sqrt{1}}{2\sqrt{V_0 V_T}} \int_{\Gamma}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{grad \, \varphi \, (x - \xi, y - \eta)}{\left[\xi^2 + \eta^2\right]^{3/4}} \, d\xi d\eta.$$
(14)

Полученные формулы дают решение задачи о контрасте произвольных электрических микрополей в эмиссионном электронном микроскопе

(при справедливости приведенных выше ограничений), т. е. позволяют найти яркость картины в любой точке изображения, если нам задан потенциал на поверхности катода. При этом построение кривых распределения яркости на экране призводится следующим образом: по заданной функции $\varphi(x)$ или $\varphi(x, y)$ производится расчет S(x) или $\vec{S}(x, y)$ согласно формулам (12) или (14); яркость же в соответствующих точках экрана находится по кривым контраста (рис. 3 или табл.).

Отметим, что формулы (12) и (14) пригодны для расчетов с помощью электронных вычислительных машин. Многочисленные расчеты для различных случаев распределения потенциала на катоде производились на мащине 1ВМ-1620. Пример контраста для *p*—*n*-перехода, потенциал которого задается двумя параболическими участками, сочлененными отрезком прямой, приведен на рис. 4.

Рассмотрим частный случай задания потенциального барьера *p*—*n*-перехода по закону

$$\varphi(x) = \frac{U_0}{\pi} \arctan \frac{x}{d}, \qquad (15)$$

использованный в работе [3]. Подстановка этого выражения в формулу (12) с последующим интегрированием дает

$$S(x) = \frac{U_0 \sqrt{l}}{2 \sqrt{2!} \sqrt{V_0 V_T} \sqrt{d}} \cdot \frac{\sqrt{1 + \sqrt{1 + x^2/d^2}}}{\sqrt{1 + x^2/d^2}}.$$
 (10)

Решение обратной задачи

С точки зрения практического применения чрезвычайно интересно решение обратной задачи, т. е. нахождение распределения потенциала на катоде по известной картине контраста на экране.

Формулы (12) и (14) можно рассматривать как интегральные уравнения типа свертки относительно функций $\varphi(x)$ или $\varphi(x, y)$. Отметим, что эта задача относится к числу некорректно поставленных [6].

Решение указанных интегральных уравнений производим методом преобразования Фурье. Такое решение возможно в рамках теории обобщенных функций [7].

Примения преобразование Фурье к уравнению (12), получаем

$$\widetilde{S}(\sigma) = C \cdot \widetilde{E}(\sigma) \cdot \sqrt{2\pi} |\sigma|^{-1/2}, \qquad (17)$$

где $\widetilde{S}(\sigma)$ и $\widetilde{E}(\sigma)$ — отображения Фурье-функций S(x) и $\frac{d\varphi(x)}{dx}$,

C — постоянный множитель, стоящий перед знаком интеграла в формуле (12). Отсюда, определив из (17) $\tilde{E}(\sigma)$ и произведя обратное преобразование Фурье, можно получить решение уравнения (12). Полученное при этом решение представляет собой расходящийся интеграл, вследствие чего необходимо произвести его регуляризацию по методам, применяемым в теории обобщенных функций [7]. Регуляризированный интеграл дается формулой

$$\frac{d\varphi(x)}{dx} = \frac{\sqrt{V_0 V_T}}{\sqrt{2}\pi\sqrt{l}} \int_{-\infty}^{\infty} \frac{S(x) - S(x - \xi)}{|\xi|^{3/2}} d\xi.$$
 (18)

Произведя интегрирование по х и необходимые преобразования, можно получить решение непосредственно для потенциала

$$\varphi(x) = \frac{\sqrt{2}\sqrt{V_0V_T}}{\pi\sqrt{1}} \int_{0}^{\infty} \{S(\xi+x) - S(x-\xi)\} \frac{d\xi}{\sqrt{\xi}}, \text{ const} (19)$$

= $\ldots \int_{0}^{\infty} \frac{dS}{\sqrt{1}g_1} S(x-\xi) + \text{ const}$

(здесь интеграл понимается в смысле главного значения).

Решение задачи в трехмерном случае требует применения преобразования Фурье по двум переменным х и у. Производя те же преобразования, что и выше, получаем решение уравнения (14) в виде

grad
$$\varphi(x, y) = \frac{\sqrt{V_0 V_T} [\Gamma(1/4)]^2}{8\pi^2 \sqrt{\pi} \sqrt{l}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\vec{s}(x, y) - \vec{s}(x - \xi, y - \eta)}{[\xi^2 + \eta^2]^{5/4}} d\xi d\eta.$$
 (20)

Искомое распределение потенциала в плоскости катода находится интегрированием полученного выражения по х и у.

Полученные формулы (18), (19) и (20) также пригодны для вычислений на электронной вычислительной машине. Используя их, можно по заданной картине отклонения S(x, y) производить непосредственно расчет распределения потенциала в плоскости катода $\varphi(x, y)$. Полное решение обратной задачи производится при этом следующим образом: по заданному распределению яркости изображения на экране с помощью кривых контраста (рис. 3) производится построение кривых S(x, y). После подстановки полученных значений в формулы (18), (19) или (20) получаем искомое распределение потенциала в плоскости катода.

ЛИТЕРАТУРА

- 1. Седов Н. Н., Спивак Г. В., Иванов Р. Д. «Изв. АН СССР», сер. физич., 26, 1332, 1962.
- 2. Седов Н. Н., Спивак Г. В., Дюков В. Г. «Изв. АН СССР», сер. физич., 27, 1179, 1963.
- 3. Спивак Г. В., Дюков В. Г., Седов Н. Н., Волков Б. И., Секерж-Зенькович С. Я. «Радиотехника и электроника», 11, 1904, 1966.
- 4. Седов Н. Н., Спивак Г. В., Дюков В. Г. «Радиотехника и электроника», 12, 1315, 1967
- 5. Rehme H. Optik, 24, No. 3, 229, 1966.
- 6. Тихонов А. А. ДАН СССР, 151, 501, 1963; 153, 49, 1963. 7. Гельфанд И. М., Шилов Г. Е. Обобщенные функции и действия над ними, вып. 1. М., Физматгиз, 1959.

Поступила в редакцию 4.7 1967 г.

Кафедра электроники