В. П. КОМОЛОВ, В. Ю. МАСЛОВ, И. Т. ТРОФИМЕНКО

О ПЕРЕСКОКАХ ФАЗЫ СУБГАРМОНИКИ В ДВУХКОНТУРНОМ ПАРАМЕТРИЧЕСКОМ ГЕНЕРАТОРЕ

Способность двухконтурных параметрических генераторов (параметронов) генерировать субгармоники высоких порядков с большим числом дискретных фазовых состояний (n>2) открывает для них широкие области применений (делители частоты, фазовые триггеры и квантователи и т. д.). В этой связи приобретают актуальность исследования стабильности параметрических колебаний, устойчивости стационарных фаз.

В настоящем сообщении приводятся результаты статистических измерений флуктуационных перескоков фазы субгармоники в двухконтурном параметрическом генераторе (параметроне) с тремя стационарными фазовыми состояними. Измерения проводились с помощью метода квантования фазы, предложенного в [1], позволяющего регистрировать только те флуктуационные выбросы фазы, которые приводили к переходу фазы субгармоники из одного стационарного состояния в другое.

В эксперимент входили следующие задачи.

Определение «пороговой» величины шума на входе параметрона, при которой перескок фазы — событие относительно редкое при различных напряжениях накачки; в качестве критерия была выбрана средняя частота перескоков фазы ~10 гц (10⁻⁵ частоты субгармоники).

Определение зависимости частоты перескоков фазы от величины отношения сигнал — шум на входе параметрона при фиксированном напряжении накачки. Такие измерения проводились для случаев, когда на входе параметрона — только шум и на входе параметрона — шум и синхронный с субгармоникой сигнал.

Определение зависимости частоты перескоков фазы субгармоники от фазы синхронного сигнала при фиксированном отношении сигнал — шум (A_c/σ_m) .

Эксперимент и результаты измерений. Исследуемый двухконтурный параметрон был собран по небалансной схеме с контурами, настроенными на частоты $f_{01} \simeq 1$ мгц и $f_{02} \simeq 2$ мгц; частота накачки $f_{\rm H} = 3$ мгц. Параметрическая связь контуров осуществлялась с помощью нелинейной емкости полупроводникового диода типа Д-205; схема работала в режиме автосмещения. При добротностях контуров $Q \sim 40-50$ параметрическое возбуждение наступало при напряжении накачки $A_{\rm H} = 4$ в. Полоса автосинхронизации, в которой генерировалась третья субгармоника накачки, составляла 130—140 кгц.

Блок-схема экспериментальной установки показана на рис. 1. Исследуемый двухконтурный генератор возбуждался непрерывной (не модулированной) накачкой. Шумовое напряжение, вызывающее перескоки фазы, подавалось на вход параметрона в контур частоты субгармоники; использовался генератор белого шума днапазона 50 гц — 6 мгц. На этот же вход подавался синхронный сигнал при измерениях с $A_c/\sigma_m \neq 0$; в качестве генератора сигнала использовался опорный трончный параметрон, работающий в режиме непрерывной генерации. Все напряжения измерялись на входе исследуемого параметрона диапазонным селективным микровольтметром в полосе 8 кгц.

Как и в [1], чтобы устранить при измерениях ошибки, связанные с флуктуациями фазы субгармоники вокруг стационарных значений, применялось дополнительное квантование фазы субгармоники на выходе исследуемого параметрона. В качестве квантователя использовался троичный параметрон, работающий в режиме силового переключения фазы. Уровень квантуемого сигнала исследуемого параметрона на входе квантователя (П-3) устанавливался таким, что фаза квантователя переключанась при перескоках фазы исследуемого параметрона только в тех случаях, когда амплитуда субгармоники исследуемого параметрона достигала значений, близких к стационарному (режим автосинхронизации).

ному (режим автосинхронизаций). Сигнал с квантователя подавался на фазовый детектор, на выходе которого формировались видеоимпульсы с амплитудой, зависящей от положения фазы субгармоники относительно фазы опорного напряжения, подаваемого с опорного параметрона. С помощью настройки фазового детектора и следующего за ним усилителя-ограничителя проводилась амплитудная селекция видеоимпульсов, соответствующих одной из трех стационарных фаз исследуемого параметрона.

Число N импульсов на выходе системы фазовый детектор—ограничитель, равное числу перескоков фазы субгармоники из условного состояния 0 в состояния 1 и 1, регистрировалось счетчиком (типа ПС-10 000). По показаниям счетчика в десяти сериях взмерений вычислялись выборочные средние $\widetilde{N} = \sum_{i=1}^{10} N_i/10$. Время накопления в каждой серии $\sim 10 \, cek$. Для каждой экспериментальной точки вычислялись доверительные интервалы [2], в которых с достоверностью 0,99 лежат истинные средние вначения \overline{N} .

На рис. 1 показана зависимость «пороговых» значений среднеквадратичного шумового напряжения $\sigma_{\rm m}$, соответствующих $\widetilde{N} = 10$, от напряжения вакачки $A_{\rm H}$. Загиб кривой на графике рис. 1 при больших напряжениях накачки связан с ограничением амплитуды субгармоники.

На рис. 2 (кривая 4) принедена зависимость среднего числа перескоков фазы \tilde{N} от величины шумового напряжения $\sigma_{\rm II}$ на входе параметрона (напряжения накачки 5 s); характерен экспоненциальный характер зависимости \tilde{N} ($\sigma_{\rm III}$).

Рис. 1. Зависимость пороговых значений $\sigma_{\rm III}$ от $A_{\rm III}$ для $\widetilde{N} = 10$ (время накопления 10 сек). Показана также блок-схема экспериментальной установки: П-1 — исследуемый параметрон, П-2 опорный параметрон, П-3 параметрон — квантователь, I — генератор накачки, 2 усилитель, 3 — буферный каскад, 4 — счетчик импульсов, 5 — градуированный фазовращатель, 6 — генератор шума, 7 — селективный микровольтметр, 8 — фазовый детектор, 9 — ограничитель; цепи питания не показаны

Рис. 2. Кривая A — зависимость \widetilde{N} от $\sigma_{\rm III}$, B — зависимость \widetilde{N} от $A_c/\sigma_{\rm III}$ при $\varphi_c = 0$, B — зависимость \widetilde{N} от $A_c/\sigma_{\rm III}$ при $\varphi_c = 0$, B — зависимость \widetilde{N} от $A_c/\sigma_{\rm III}$, при $\varphi_c = 60^\circ$, F — зависимость \widetilde{N} от фазы сигналя φ_c при $A_c/\sigma_{\rm III} = 1$; вертикальными черточками обозначены доверительные интервалы є. Показана также диаграмма устойчивых фазовых состояний (0, 1, $\overline{1}$) на фазовой плоскости; пунктиром обозначено положение сепаратрис

На рис. 2 показана также зависимость \widetilde{N} от отношения сигнал — щум на входе параметрона при постоянном наприжении накачки $A_{\rm H} = 5 \, e$ для двух значений фазы синхронного сигнала φ_c , отсчитанной от одной из стационарных фаз субгармоники. Кривая \mathcal{B} определяет $\widetilde{N} (A_c/\sigma_{\rm III})$ при оптимальной фазе сигнала $\varphi_c = 0$; кривая $\mathcal{B} - \widetilde{N} (A_c/\sigma_{\rm III})$ при неоптимальной фазе $\varphi_c = \frac{\pi}{3}$, соответствующей сепаратрисе на фазовой плоскости (см. рис. 2). Кривая Γ показывает зависимость \widetilde{N} от фазы синхронного сигнала при отношении сигнал/шум = 1 и напряжении накачки 5е.

Полученные экспериментальные результаты позволяют оценить время хранения информации в троичном параметроне при использовании его в логических схемах с фазовой записью информации в условиях воздействия флуктуациенных помех.

Зависимость частоты перескоков фазы от отношения сигнал-шум может быть использована для селекции сигнала и шума, при этом в отличие от двоичного параметрона (см. [1]) возможна регистрация сигнала с неизвестной фазой. Исследование статистики перескоков позволяет получить информацию о фазе входного синхронного сигнала и представляет интерес для фазовых измерений.

ЛИТЕРАТУРА

1. Комолов В. П., Нго-Куанг-Ань, Трофименко И. Т. «Вестн. Моск. ун-та», сер. физ., астрон., № 6, 85, 1967. 2. Длин А. М. Математическая статистика в технике. М., «Советское радио», 1958.

Поступила в редакцию 15.12 1967 г.

Кафедра радиотехники

УДК 539.293: 537.312.8

в. ч. жуковский

КВАНТОВЫЙ ПАРАМЕТРИЧЕСКИЙ РЕЗОНАНС В МАГНИТНОМ ПОЛЕ

Развитие лазерной техники представляет много интересных возможностей для наблюдения нелинейных эффектов в твердых телах и в атомах [1, 2]. Теория подобных процессов развивалась в работах Л. В. Келдыша [2] и других авторов [3, 4, 5]. Ниже будет рассмотрено нелинейное поглощение в полупроводнике в магнитном поле в результате параметрического резонанса и будет дана квантовая теория этого эффекта. Рассмотрим заряд *е*, находящийся в постоянном магнитном поле $\vec{H} \parallel 0z$ и в поле плоской линейно-поляризованной электромагнитной волны $\vec{H}_{\sim} \parallel \vec{H}$ с потенциалом $\vec{A}_{\sim} = (0, b \sin (kx - \omega t), 0)$, который при $t \to \pm \infty$ обращается в нуль ($b = 0, t \to \pm \infty$). Наша задача состоит в том, чтобы вычислить вероятность переходов заряда под действием поля \vec{H}_{\sim} в явном аналитическом виде.

В частности, это могут быть внутризонные переходы носителей в полупроводнике в интенсивном свете.

Введя операторы $\overline{a}(t)$ и $\overline{a}^+(t)$

$$\widehat{a}(t) = \widehat{a} - i \frac{c\alpha}{\omega_c r_0} \sin(kx - \omega t), \quad [\widehat{a}(t), \ \widehat{a}^+(t)] = 1 + \beta \cos(kx - \omega t),$$
$$\widehat{a} = \frac{1}{r_0} \left(\frac{c\widehat{p}_x}{eH} - i (x - x_0) \right), \quad [\widehat{a}, \ \widehat{a}^+] = 1,$$
(1)

$$\omega_c = \frac{eH}{mc}, \quad r_0 = \left(\frac{2c\hbar}{eH}\right)^{1/2}, \quad x_0 = -\frac{cp_y}{eH}, \quad \beta = \alpha \frac{\omega}{\omega_c} = \frac{H_{\sim}}{H},$$

получим для $\hat{a}(t)$ следующее нелинейное уравнение:

$$\frac{d\widehat{a}(t)}{dt} = \frac{ic\beta}{r_0} \cos\left(kx - \omega t\right) - i\omega_c \left(1 + \beta \cos\left(kx - \omega t\right)\right)\widehat{a}(t) - \frac{\omega_c}{2} \left[\widehat{a}(t), 1 + \beta \cos\left(kx - \omega t\right)\right].$$
(2)

Третье слагаемое в этом выражении для da(t)/dt имеет порядок $\hbar\omega_c/mc^2 \ll 1$ относительно первого и, следовательно, для малых частот ω , пренебрегая отдачей, его можно положить равным нулю.

Это означает, что x здесь можно рассматривать не как оператор, а как c — число, вообще говоря, зависящее от времени. Однако этой зависимостью можно в дальнейшем пренебречь, полагая $kx = \text{const} = \gamma$. Это справедливо, так как длина волны микроволнового или инфракрасного излучения много больше циклотронного радиуса.

Тогда уравнение (2) принимает вид, характерный для задачи о параметрических колебаниях. Заметим, что параметрический резонанс для классических частиц (например, илазмы) в полях (1) и (2) исследовался в [6].

Решение (2) может быть представлено следующим образом:

$$\widehat{a}(t) = \widetilde{a}_{in}(t) + \int_{-\infty}^{t} dt' \varphi(t') \exp\left\{i \int_{t'}^{t} d\tau \omega(\tau)\right\}$$
(3)