Вестник московского университета

9 <u>_____</u>

№ 6 - 1969

УДК 537.525

Э. М. РЕЙХРУДЕЛЬ, Г. В. СМИРНИЦКАЯ, А. Н. МАВЛЯНОВ

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ В РАЗРЯДЕ С ОСЦИЛЛИРУЮЩИМИ ЭЛЕКТРОНАМИ

Измерен усредненный по поверхности катода коэффициент вторичной ионноэлектронной эмиссии γ_{cp} в разряде с осциллирующими электронами. Получены зависимости γ_{cp} от H, p, V_a и от рода ионов (N_2^+ , He⁺, Ne⁺, Ar⁺), бомбардирующих катоды. Сравниваются величины γ_{cp} для катодов из разных материалов (Al, Ag, Be, Bi, Cu, In, Nb, Ti, Ta, Re, Zr, W), γ_{cp} для молибдена. Определено значение эффективного коэффициента вторичной эмиссии Γ для первого режима разряда при различных давлениях газа.

Для выяснения роли процессов на катоде в зажигании и в токе разряда с осциллирующими электронами представляет интерес определение коэффициента вторичной эмиссии с поверхности катода в условиях горящего разряда. Известен ряд работ, в которых обсуждается вопрос о роли вторичной электронной эмиссии в цилиндрическом газомагнетроне и пеннинговском разряде. Так в [1] показано, что не все электроны, вышедшие с катода цилиндрического холодного диода, участвуют в развитии лавины, часть из них возвращается обратно на катод. Поэтому эффективный коэффициент вторичной эмиссии Γ равен $\Gamma = w\gamma$, где γ — коэффициент вторичной электронной эмиссии с катода под действием ионов, w — вероятность столкновения электрона с атомом газа при движении по циклоиде. Полагая, что электрическое поле однородно на высоте циклоиды, автор [1] вывел формулу, связывающую w с параметрами разряда.

В [2] с помощью двух малых источников электронов (накаленных нитей), из которых один помещен в центре, а другой у края катода, определено значение Γ для разных точек молибденового катода. При давлении $\sim 10^{-5}$ тор для электронов, вышедших из центра катода, $\Gamma \simeq 0.05$.

В [3, 4] исследовалось влияние материала катода на зажигание пеннинговского разряда. В [5] экспериментально определен коэффициент вторичной эмиссии в триодном ионном насосе, причем в одних и тех же условиях двумя путями получено два значения γ , сильно отличающиеся друг от друга. Последнее, по-видимому, связано с тем, что в используемой схеме измерений не было возможности выделить истинный ионный ток на коллектор и на катод. В настоящей работе измерен коэффициент вторичной эмиссии, усредненный по поверхности катода для ионов, падающих на катод под разными углами и с различной энергией уср; кроме того, измерен эффектный коэффициент вторичной эмиссии Г в разряде с осциллирующими электронами при давлениях $10^{-5}-10^{-7}$ тор в разных газах и для различных материалов катодов.

Методика определения $\gamma_{c \mathtt{D}}$ и Γ

В разряде с осциллирующими электронами, электроны, освобожденные из катода ударами ионов, участвуя в циклоидальном движении вокруг линий магнитного поля, направляются ко второму катоду. При этом те электроны, которые испытали упругие соударения, быстро уходят на анод и практически не играют роли в развитии лавины. Электроны, потерявшие энергию при неупругих соударениях с атомами газа, не могут достигнуть противоположного катода и участвуют в создании лавины по радиусу разряда. Электроны же, не испытавшие соударений, могут попасть на противоположный катод. Ток на один из катодов можно выразить так:

$$I_{k} = I_{i} + \gamma_{cp}I_{i} - I_{ek} = \frac{1}{2}I_{a}, \qquad (1)$$

где I_i — ионный ток на катод, $\gamma_{\rm CP}$ — коэффициент вторичной эмиссии, усредненный по поверхности катода для ионов, падающих на катод с различной энергией и под разными углами; I_{ek} — электронный ток на катод, который в первом режиме разряда [6] состоит из электронов, пришедших с противоположного катода, во втором режиме — в создании этого тока на катод участвуют также электроны из объема, получившие дополнительную энергию в результате взаимодействия с переменным (высокочастотным) электрическим полем, возникающим в этом режиме разряда; I_a — ток на анод.

В первом режиме разряда электронный ток с катода, созданный той частью электронов, которые испытали соударения с атомами газа, равен $\gamma_{cp} \cdot I_i - I_{ek}$.

Отсюда можно определить вероятность соударений w и эффективный коэффициент вторичной электронной эмиссии Γ , усредненный по поверхности катода:

И

$$\omega = \frac{\gamma_{\rm cp} I_i - I_{ek}}{\gamma_{\rm cp} I_i}$$

$$\Gamma = \omega \gamma_{\rm cp} = \gamma_{\rm cp} - \frac{I_{ek}}{I_i} = \frac{\frac{I_a}{2} - I_i}{I_i}.$$
 (2)

Из формул (1) и (2) видно, что для определения γ_{cp} и Γ необходимо измерить разрядный ток и выделить из тока, поступающего на катод, ионный и электронный компоненты.

Измерения I_i и I_{ek} производились на установке, схема которой представлена на рис. 1. В одном из катодов K_1 вырезана криволинейная щель (рис. 1, *a*), вдоль которой может перемещаться коллектор K, укрепленный на расстоянии 1 *мм* от пластины Π_1 и изолированный от нее. Пластина Π_1 вплотную лежит на катоде K_1 и может поворачиваться вокруг оси O'O'. На рис. 1, *a* показаны последовательные положения коллектора K на различных расстояниях от центра катода K_1 . Цифрами (0, 2, ..., 14) указаны положения центра отверстия коллектора на радиусах катода в *мм*.

Полный ионный ток I_i на катод K_1 равен сумме ионных токов, идущих на отдельные кольца катода. Ионные токи на кольца соответственно равны $I_0 = \pi r_0^2 j_0$; $I_1 = 8\pi r_0^2 j_1$; $I_2 = 16\pi r_0^2 j_2$, ..., $I_7 = 56\pi r_0^2 j_7$, где j_0 , j_1 , j_2 , j_7 — плотности ионных токов на соответствующие кольца

Рис. 1. Схема электродов измерительной трубки. *а* — схема с подвижным коллектором, *в* — схема с подвижным диском, устанавливающим различ ные металлы в центре катода

катода, определяемые из измерений токов на подвижной коллектор; r_0 — радиус отверстия коллектора, $r_0 = 1$ мм.

Измерение компонентов токов на коллектор производилось следующим образом.

Пусть U_{k_1} — потенциал коллектора K относительно катода K_1 , U_{k_2} — потенциал катода K_2 относительно катода K_1 . Тогда при разных значениях U_{k_1} и U_{k_2} токи на коллектор будут: при $U_{k_1} = 0$, $U_{k_2} = 0$:

$$I_{1k} = I_{i \text{ кол}} - I_{ek} - I_{eo} + I_{e\gamma}.$$
 (3)

Здесь I_{eh} — электронный ток на коллектор, I_{eo} — ток вторичной эмиссии электронов с краев отверстия в катоде K_1 , I_{eY} — ток вторичной эмиссии электронов с коллектора K.

При
$$U_{k_1} < 0$$
, $U_{k_2} = 0$:

$$I_{2k} = I_{i \text{ KOJ}} + I_{ey}; \tag{4}$$

При $U_{k_1} = 0, U_{k_2} > 0$:

$$I_{3k} = I_{i \text{ кол}} + I_{e\gamma} - I_{eo}; \tag{5}$$

При $U_{k_1} > 0$, $U_{k_2} > 0$:

$$I_{4k} = I_{i \text{ кол}} - I_{eo}. \tag{6}$$

Из уравнений (3)-(6) можно определить компоненты токов на коллектор. При этом U_{k_1} изменялось от +15 до -70 в, U_{k_2} - от 0 до 30 в. Данный метод измерений позволяет получить достаточно точные значения компонентов токов только в первом режиме, когда потенциал центра высок и используемые значения U_{k_1} и U_{k_2} не влияют существенно на энергию ионов. Во втором же режиме разряда, когда потенциал центра понижается до нескольких вольт, используемые значения U_{k1} и U_{k2} сильно изменяют энергию осевых ионов. Однако доля последних в общем ионном токе, идущем в центральную часть катода, составляет несколько процентов; поэтому ошибка в измерении ионного тока, поступающего в центральную часть катода ~20-25%. Причем значения ионного тока получаются завышенными, а электронного заниженными. Поскольку при определении уср и Г нас интересует полный ионный ток на катод, в котором доля ионов, идущих в центральную часть катода, составляет ~50%, ошибка в определении уср и Г для второго режима разряда будет также ~25%. При давлениях <10⁻⁶ тор ошибка в определении Г возрастает. При измерениях контроль состава газа производился с помощью прибора ИПДО-1. Вакуумная система откачивалась ионным (электроразрядным) насосом, что исключало образование пленок, сильно влияющих на величину у.

Результаты измерений и их обсуждение

На рис. 2 приведены кривые $\gamma_{cp} = f(H)$ для катодов из молибдена при разряде в разных газах (He, Ne, Ar, N₂).

При слабых магнитных полях, когда разрядный ток I_a с ростом H растет (первый режим разряда), γ_{cp} мало меняется с увеличением магнитного поля. Дальнейшее увеличение H приводит к резкому уменьшению разрядного тока I_a и переходу разряда во второй режим, который характеризуется сильным уменьшением падения потенциала по оси. Ионизация вблизи оси и энергия осевых ионов уменьшаются, это приводит к уменьшению γ_{cp} .

Из рис. 2 видно, что γ_{cp} зависит от рода ионов газа. С увеличением массы ионов инертного газа γ_{cp} уменьшается. Это совпадает с результатами других работ [7—9]. В таблице 1 приведены измеренные нами значения γ_{cp} для ионов разных газов при слабых H и значения γ , полученные в работах [7—9] для энергий ионов 200—2000 эв.

Из рис. 2 видно, что увеличение анодного потенциала при слабых H приводит к росту γ_{cp} , при сильных же магнитных полях значение γ_{cp} не зависит от V_a . Такой ход зависимости объясняется тем, что при слабых магнитных полях (I режим) с увеличением V_a осевое падение потенциала и энергия ионов, образовавшихся вблизи оси, растут. При

переходе разряда во второй режим (сильные H) осевое падение потенциала уменьшается и мало изменяется с ростом V_a ; γ_{cp} при этом уменьшается и не зависит от V_a .

На рис. З приведены зависимости уср от давления газа. Уменьшение уср при уменьшении давления газа при слабых магнитных полях

в разных газах. $a - при V_a = 2000 \ e,$ $p = 3 \cdot 10^{-6} \ rop; \ 6 - 1 - V_a = 2000 \ e,$ $p = 3 \cdot 10^{-6} \ rop; \ 2 - V_a = 3000 \ e, \ p = 5 \cdot 10^{-7} \ rop;$ $3 - V_a = 2000 \ e, \ p = 5 - 10^{-7} \ rop; \ 4, \ 5, \ 6 - V_a = 2000 \ e, \ p = 3 \cdot 10^{-6} \ rop$

газ Мо	He+	Ne+	Ar+	
үср	0,32	0,27	0,19	
	0,30 [9]	0,25 [9]	$0, 10 \div$ $\div 0, 16 [8]$	
Ŷ	0 ,26 ÷ ÷0 ,44 [7]	0 ,26 [8] 0, 26 ÷ ÷0,40[7]	0,12[9]	

Таблица 1

может быть объяснено изменением толщины слоя газа, который адсорбируется на периферийных частях катода. Работа выхода электронов с этой части катодной поверхности также будет изменяться с изменением давления. При увеличении *H* (II режим разряда) основная область ионизации приближается к катоду и угол падения ионов на катод растет. Ионный ток на перифе-

рийные части катода также увеличивается. Это приводит к очистке периферийной части катодной поверхности от адсорбированного газа и к независимости уср от давления.

Для определения зависимости γ_{cp} от рода металла катода использовалась схема, представленная на рис. 1, в. В центре катода K_2 имелось отверстие $\phi_2 = 4 \, \text{мм.}$ За катодом K_2 располагалась пластина Π_2 , на которой укреплялись различные металлы. Пластина Π_2 вплотную прилегала к катоду K_2 и могла поворачиваться вокруг осн O'O', при этом в отверстии катода K_2 устанавливался нужный металл. За отверстием $\phi_1 = 2 \, \text{мм}$ в центре катода K_1 , находился коллектор K, позволяющий измерять токи, идущие в центр катода K_1 .

Пусть ионный ток, идущий в центр катода K_1 при различных металлах, помещенных в центре катода K_2 , одинаков. Тогда относительный коэффициент вторичной эмиссии $\gamma_{\text{отн}}$ равен

$$\gamma_{\text{OTH}} = \frac{\gamma_{M_1}}{\gamma_{M_2}} = \frac{I_{ek_1}}{I_{ek_2}}$$

где I_{ek_1} — электронный ток на коллектор, поступающий из центральной части катода K_2 с помещенного там заданного металла; I_{ek_2} — то же для другого металла.

Таким образом, для определения относительного коэффициента $\gamma_{\text{отн}}$ необходимо измерить электронные токи на коллектор при разных металлах в отверстии катода K_2 и при постоянных значениях ионных то-

ков. Перед измерениями каждый металл обезгаживался бомбардировкой ионами He⁺ и Ne⁺ в одинаковых условиях. Все измерения проводились в смеси газов 61,4 % He⁺ 38,3 % Ne⁺0,2 % N₂+0,1 % (Ar, H₂O, CO₂) при парциальных давлениях p_{He} =3,5 · 10⁻⁶ и p_{Ne} =2,2 · 10⁻⁶ *тор*. В качестве контрольного металла использовался Мо. В таблице 2 приведены значения коэффициентов вторичной эмиссии для разных металлов относительно Мо (уср.отн), а также соответствующие значения работы выхода φ и значения $\varphi_{\text{отн}}$ по отношению к Мо.

Из таблицы 2 видно, что уср несколько различно для материалов с разной работой выхода. Наиболь-

шее значение γ_{cp} получается в случае алюминия, у которого работа выхода имеет наименьшее значение.

Рис. 3. Зависимость $\gamma_{cp} = f(p)$. Параметр — напряженность магнитного поля. $V_a = 2000 \ e$, H: I = 310, 2 - 620, $3 - 930, 4 - 1240 \ эрст$

Рис. 4. Зависимость потенциала зажигания от *H* для различных материалов в центральной части катода

па р	ис. 4 приведены	кривые	зажигания,	снятые	ДЛЯ	различных	материа-
лов,	установленных в	центре	катода К2.				

Таблица 2

Металл	$\gamma_{\text{OTH}} = \frac{\gamma_M}{\gamma_{\text{MO}}} \pm 0.04$			$\varphi_{\text{opt}} = \frac{\varphi_M}{M}$	φ, ε [10,11]
	$V_a = 1000 \ s$ $H = 260 \ spcm$	$V_a = 2000 \ \theta$ $H = 300 \ spcm$	$V_a = 3000 \ s$ $H = 300 \ spcm$		
Ве-технич. пластинка	0,76	1,10	1,28	0,77—0,91	3,4-3,92
Al Ti Cu Zr Nb Mo Ag-0,999 In	1,59 1,12 1 1,3 1,02 1 0,87 0,93	1,56 1,13 1,03 1,51 1,15 1 0,96 0,90	1,53 1,15 0,99 1,64 1,04 1 0,95 0,91	$\begin{array}{c} 0,69-0,99\\ 0,91\\ 1-1,01\\ 0,83-0,95\\ 0,92\\ 1\\ 0,99-1,03\\ 0,95\\ 0,9$	$\begin{array}{r} 2,98-4,25\\ 3,95\\ 4,35-4,4\\ 3,60-4,1\\ 3,99\\ 4,33\\ 4,31-4,45\\ 4,09\end{array}$
листов. прокат W-технич.	1,14	1,21	1,20	0,95—0,96 1,01—1,06	4,1-4,12 4,38-4,6
Re-технич. проволока 0,99 Ві	0,9 2 0,9 2	1 1,02	1,04 0,92	1,06—1,15 1,01—1,06	4,6—5 4,4—4,6
					ļ

τ 1

Потенциал зажигания с увеличением уср уменьшается. Аналогичные зависимости для центральной части катода из Al, Cu, Mo, Та были получены в работе [4]. Влияние материала центральной части на зажигание разряда говорит о том, что в развитии лавины принимают участие в основном электроны, вышедшие из центральной части катода.

Из ура Т	Из уравнения (2) Таблица 3		
p, mop	Г		
$ \begin{array}{r} 1 \cdot 10^{-5} \\ 5,6 \cdot 10^{-6} \\ 2,4 \cdot 10^{-6} \end{array} $	0,13 0,056 0,041		

видно, что, измеряя описанным выше методом ионный компонент тока, идущего на катод в I режиме разряда, можно определить значение эффективного коэффициента вторичной эмиссии Г.

В таблице З приведены значения Г, вычисленные по уравнению (2) для различных давлений газа при разряде в воздухе для Мо-катодов $(V_a = 2000 \ B, H = 300 \ pcT).$

С уменьшением давления вероятность столкновения и ухода электронов от оси уменьшается, это приводит к уменьшению Г.

ЛИТЕРАТУРА

- 1. Redhead P. A., Canad. J. Physics, 37, 1260, 1959; 36, No. 3, 255, 1958.
- 2. Knauer W. J. Appl. Phys., 33, No. 6, 2093, 1962.
- 3 Исакаев Э. Х., Рейхрудель Э. М. «Вестн. Моск. ун-та», физ., астрон., № 3, 124, 1966.
- 4. Рейхрудель Э. М., Смирницкая Г. В., Баберцян Р. П. «Радиотехника и электроника», 11, 2095, 1966.
 5. Kenneth B. Wear. J. Appl. Phys., 38, No. 4, 1936, 1967.
 6. Рейхрудель Э. М., Смирницкая Г. В., Нгуен Хыу Ти. Contrib. Ра-регз on the 8-th Intern. Confer. on Phenom. in Ionized Gases, Vienna, 1967, p. 187.
 7. Арифор V. А. Дахимор В. В. Димира Умира.

- Арифов У. А., Рахимов Р. Р., Джуракулов Х. «Радиотехника и электроника», 8, № 2, 299, 1963.
 Арифов У. А., Рахимов Р. Р. ДАН УзССР, № 12, 15, 1958; «Изв. АН УзССР»,
- сер. физ.-мат. наук, № 5, 1958. 9. Надstrum, Нотег D. Phys. Rev., 104, 672, 1959.
- 10. Физико-химические свойства элементов. Справочник, 1965.
- 11. Фоменко В. С. Эмиссионные свойства элементов и химических соединений. Справочник, 1964.

Поступила в редакцию 24.1 1969 г.

Кафедра общей физики для биологов