При е≈10²⁹ СGSE поправка оказывается порядка 10⁻¹² от основного эффекта.

Гравитационное смещение спектральных линий. Согласно ОТО, в случае, когда излучатель и приемник покоятся в слабом статическом гравитационном поле, для частот излучения в точках испускания (v_1), приема (v_2) и их разности Δv имеем в первом приближении

$$\frac{\Delta v}{v_1} = \frac{v_2 - v_1}{v_2} = \frac{\Phi_2 - \Phi_1}{c^2}, \quad (13)$$

где Φ определяется выражением $g_{00} = 1 + 2 \Phi/c^2$. Для света, идущего от Солнца к Земле, имеем

$$\frac{\Delta \mathbf{v}}{\mathbf{v}_{\mathbf{I}}} = -\frac{\gamma \mu}{c^2 r} + \frac{\gamma e^2}{c^4 r^2} + \frac{\Phi_{3\text{емли}}}{c^2}.$$
 (14)

Для Солнца $r = R_{\odot}$ и первый член равен — $\gamma M/cR_{\odot}^2 = -2,12 \cdot 10^{-6}$, в то время как $\Phi_3/c^2 = 7 \cdot 10^{-10}$ [4]. Эффект, вызванный зарядом, даже при его максимальной возможной величине (10²⁹ CGSE), еще меньше — порядка 10⁻¹².

Отметим, что заряд Солнца е во всех трех случаях и независимо от его знака ослабляет эффект, обусловленный массой М. Это следовало ожидать, так как в метрике Рейснера — Нордстрема члены с зарядом е и массой М имеют противоположный. знак.

Мы видели, что из трех эффектов, вызванных зарядом, может представить интерес только дополнительное движение перигелия Меркурия.

В этой связи следует заметить, что существует еще один слабый эффект, который: также может давать ощутимую поправку в движении перигелия Меркурия, но противоположного (по сравнению с эффектом от заряда) знака — это влияние сплюснутости Солнца, приводящее к наличию квадрупольного момента массы [4, 5].

Очевидно эффекты от заряда и от сплюснутости Солнца могут в принципе ком-пенсировать друг друга. Поэтому в связи с вопросом о проверке ОТО представляет значительный интерес эмпирическое определение как сплюснутости Солнца, так и егозаряда.

ЛИТЕРАТУРА

- 1. Bailey V. A. J. Proc. Roy. Soc. N. S. Wales, 94, No. 2, 1960. 2. Bailey V. A. Nature, 201, No. 4925, 1202, 1964. 3. Гинзбург В. Л. В сб. «Эйнштейн и современная физика». М., 1956. 4. Salpeter E. E. Comm. Nucl. and Part. Phys., 1, No. 3, 1967. 5. Dicke R. H. Am. J. Phys., 35, No. 7, 1967.

Поступила в редакцию 18.7 1969 г.

1.11

Кафедра астрофизики

УДК 539.196.21

Н. Б. БРАНДТ, И. Г. КУЗЕМСКАЯ, Л. В. ЛАЗАРЕВА

о возможности определения длины свободного пробега у образцов с точечными ЭЛЕКТРИЧЕСКИМИ КОНТАКТАМИ

Исследование образцов с длиной свободного пробега l, сравнимой или превышающей размеры образца L, при наличии точечных токовых электродов, вызывают большой интерес [1, 2, 3].

В работе [1] рассмотрена, в частности, задача о электрическом сопротивлении в приконтактной области в отсутствие магнитного поля. Электрическое сопротивление R в области $r_0 < l$, где r_0 — расстояние от точечного токового электрода, определяется только процессами ускорения вблизи от контакта и не зависит от l. Это приводит к. тому, что при понижении температуры сопротивление в этой области должно изменяться слабее, чем в областях, удаленных от токовых электродов на расстояние r>l.. Таким образом, характер зависимости сопротивления от температуры будет различным для областей $r_0 < l$ и r > l.

Если на образце имеется несколько потенциальных контактов α , β , *i*, *k*, то величина относительного изменения сопротивления между любыми парами контактов, удаленных от токовых электродов на расстояние $r \gg l$, при понижении температуры должна быть одной и той же.

В случае, когда хотя бы один из контактов расположен в области $r_0 < l$, относительное изменение сопротивления между ним и любым другим контактом при пониже-

Рис. 1. Изменение характера распределения потенциала с понижением температуры на поверхности образца Ві—І длина L=5,9 мм, \emptyset 4,5 мм, $\rho_{300^\circ}/\rho_{4,2^\circ K}=135$, \bigcirc $-T=300^\circ$ K, $I_1=2,5$ ма, $x-T=77^\circ$ K, $I_2=7,5$ ма, $\triangle -T=4,2^\circ$ K, $I_3=7,5$ ма

Рис. 2. Температурная зависимость отношения $V_{ik}/V_{\alpha\beta}$ для образца Ві—І. \triangle — контакты 9—8 и \bigcirc — контакты 1—2: ось ординат слева; • — контакты 3—4, х — контакты 2—3, \square — контакты 7—6 и \triangle — контакты 7—6: ось ординат справа; V = 4—6 разность потенциала на центральной части образца, V_{i-k} — разность потенциалов между различными парами контактов

нии температуры будет меньше, чем для удаленных пар. Поэтому, при наличии только этого эффекта относительная разность потенциалов $V_{ik}/V_{\alpha\beta}$ не должна меняться при понижении температуры, если расстояния (r_{α} , r_{β} и т. д.) всех контактов (α , β и т. д.) от токовых электродов превышают l_{\max} при самой низкой температуре. В том случае, когда $r_i < l_{\max}$ или $r_k < l_{\max}$, отношение $V_{ik}/V_{\alpha\beta}$ должно возрастать, начиная с температур, при которых r_i , $r_k \sim l_{\max}$. Таким образом, зная расстояния r_i , r_k потенциальных электродов от токовых контактов, по изменению температурной зависимости $V_{ik}/V_{\alpha\beta}$ можно судить о величине l в образце.

Для проверки этих соображений было исследовано распределение потенциала на поверхности образцов, имеющих электрические контакты малых размеров при температурах 300, 77 и 4,2°К. Измерения проводились на монокристаллах Ві чистоты 99,9999% со средним отношением $\rho_{300°K} / \rho_{4,2°K} \sim 130$ и длиной свободного пробега при 4,2°К порядка 0,3—0,4 мм. Токовые и потенциальные контакты из медной проволоки Ø 20 мк подпаивались к образцам сплавом Вуда или подваривались искровым методом [4]. Расположение контактов на образцах и расстояние между ними показано на рис. 1—3. Разность потенциалов измерялась фотоэлектрическим усилителем с чувствительностью 1·10⁻⁸ в/мм. Для исключения влияния термоэффектов измерения проводились на различных токах. Собственное магнитное поле измерительного тока и поле Земли, а так же взаимная ориентация измерительного тока и кристаллографических осей образцов на результаты измерений не влияют.

Типичное распределение потенциала на поверхности образца Ві—І, сиятое при трех температурах, приведено на рис. 1. У этого образца первый потенциальный кон-

такт приварен вплотную к токовому в области *r*₀ < *l*. Графики выполнены в приведенном масштабе: по оси х отложены расстояния между потенциальными контактами, начиная с ближайшего к левому токовому (цифры соответ-ствуют номерам контактов). По оси *у* — разность потенциалов между соответствующими парами контактов *i* — k. Измерительные токи подбирались таким образом, чтобы максимальная разность потенциалов, возникающая между крайними электродами, совпадала при различных температурах. Масштабы токов указаны в подписи к рисунку.

Отчетливо наблюдается изменение характера распределения потенциала при понижении температуры ниже 77° К. Температурная зависимость слабее для электродов, ближайших к токовым, и более сильная в центральной части образца. Особенно отчетливо это проявляется для температурной зависимости Vih/Vab, приведенной для этого же образца Bi-I ня рис. 2. У этого образца контакты 1-й и 9-й расположены в области $r_0 < l$. Отношение V_{1-2}/V_{4-6} и V_{9-8}/V_{4-6} , где V_{4-6} разность потенциалов в центральной части образца, меняется при понижении температуры от 300 до 4,2° К в 12-13 раз. Для удаленных пар отношение меняется очень слабо.

На рис. З приведена аналогичная зависимость для образца Ві—ІІ, у которого ближай-ший к токовому первый потенциальный контакт расположен на расстоянии 0,35 мм. В этом случае отношение V1-2/V5-6 возрастает всего в 1,1 раза во всем диапазоне температур. Характер такой температурной зависимости относительного изменения напряжений проверен на 20 образцах Ві. Аналогичные измерения

Рис. 3. Температурная зависимость $\hat{V}_{ih}/\hat{V}_{\alpha\beta}$ для образца отношения Длина L = 10, Ø 4,5 мм, Bi—II. ∧ — контакты 10—9, • — контакты ρ_{300°} /р_{4,2°К} = 130. О-контакты 1-2. 9-8, △ - контакты 2-3, 🔲 - контакты 4-5. 🗌 — контакты 3-4

проведены на образцах Ві, легированных Sb и Ti, у которых l << 0,1 мм. Эффект возрастания Vik/VaB при понижении температуры у них отсутствует. Аналогичное явление наблюдалось, по-видимому, в работе [3] при исследовании влияния размеров образцов Ві на их электрическое сопротивление при низких температурах, когда площадь сечения токовых электродов была меньше площади поперечного сечения образца. К сожалению, в настоящее время остается невыясненным роль других факторов в наблюдаемом эффекте.

Если рассмотренное явление, в основном, обусловлено размерным эффектом, то оно может быть использовано в качестве нового метода определения длины свободного пробега в металлах. Так, по нашим оценкам, сделанным этим способом, для Ві с отношением р_{300°К}/р_{4,2°} ~ 130-150 длина свободного пробега при T=4,2° К, l~0,3-0,4 мм, что согласуется с ранее приводимыми оценками.

В заключение выражаем благодарность Ю. В. Шарвину за обсуждение результатов.

ЛИТЕРАТУРА

1. Шарвин Ю. В. ЖЭТФ, 48, № 3, 984, 1965.

2. Шарвин Ю. В., Фишер Л. М. Письма в ЖЭТФ, 1, № 5, 54, 1965. З. Александров Б. Н. ЖЭТФ, 43, 8, 1962.

4. Брандт Н. Б. «Приборы и техника эксперимента», № 2, 132, 1965. 5. Friedman A. N., Koenig S. H. IBM, J. Res. Develop., 4, No. 2, 1960. 6. Боровик Е. С., Лазарев Б. Г. ЖЭТФ, 21, № 8, 1951.

7. Богод Ю. А. Кандидатская диссертация. Харьков, 1948.

Поступила в редакцию 1.9 1969 г.

Кафедра низких температур