Весліник московского университета

@_____

№ 1 — 1971

УДК 535.212+537.56

В. В. БАЛАШОВ, С. С. ЛИПОВЕЦКИЙ, А. В. ПАВЛИЧЕНКОВ, А. Н. ПОЛЮДОВ, В. С. СЕНАШЕНКО

АВТОИОНИЗАЦИОННЫЕ СОСТОЯНИЯ В ГЕЛИЕПОДОБНЫХ ИОНАХ

В диагонализационном приближении рассчитаны положения и ширины нескольких низших синглетных и триплетных $S^{(+)}$, $P^{(-)}$ и $D^{(+)}$ резонансов для всей последовательности гелиеподобных ионов от Li⁺ до четырехзарядного иона углерода. Полученные результаты сравниваются с имеющимися экспериментальными и теоретическими данными.

В настоящей работе на основе результатов, полученных в [1], проведены расчет и классификация автоионизационных состояний в гелиеподобных ионах, сходящихся к порогу n=2 иона — остатка. Изучение свойств этих состояний представляет интерес для понимания ряда плазменных и астрофизических явлений [2]. Некоторые из них будут рассмотрены нами позднее.

Состояния $^{1,3}S^{(+)}$

Расчет ^{1,3} $S^{(+)}$ -состояний выполнен с использованием базиса, включающего конфигурации 2sns, 2pnp, 3sns, 3pnp, 3dnd; $n \leq 5$. Результаты представлены в табл. 1а и 2.

Возможность сравнения полученных результатов с расчетами других авторов имеется только для атома гелия. Положение и ширины нижайших ${}^{1}S^{(+)}$ -состояний, полученные в настоящей работе, неплохо согласуются с результатами расчетов по методу сильной связи [3] и близки к результатам работы Липского и Рашека [4], полученным диагонализацией матрицы значительно более высокого порядка. Вариационные расчеты положений и ширин двух низших ${}^{1}S^{(+)}$ -состояний для изоэлектронной последовательности от Не до B^{3+} из работы Перрота и Стюарта также хорошо согласуются с нашими результатами.

Расчеты ${}^{3}S^{(+)}$ -состояний в гелии были выполнены ранее по методу сильной связи [3]. Ширины ${}^{3}S^{(+)}$ -состояний оказываются значительно меньше, чем для ${}^{1}S^{(+)}$. Наши расчеты хорошо согласуются с данными этой работы для автоионизационных состояний с большими ширинами, однако заметное различие в ширинах имеется для очень узких резонансов. Для гелиеподобных ионов расчеты характеристик ³S⁽⁺⁾ автоионизационных состояний нам неизвестны.

Анализ структуры волновых функций ^{1,3}S⁽⁺⁾-состояний указывает на возможность введения (±) классификации этих состояний [5] на базе комбинаций типа $\frac{1}{\sqrt{2}}$ [2sns ± 2pnp] (см. табл. 1). Сравнение с результатами Липского и Рашека [4] показывает, что такая классификация оказывается более строгой, чем предложенная ранее классификация по признаку максимальной суммы квадратов весовых коэффициентов (ss) или (pp) конфигураций, включаемых в базис.

Таблица Іа

Номер состояния	Характе	еристики со	рины	Суммы квадратов (+), () и (n=3) компонентов волновых					
состояния и (+) клас-		pa	счеты ді	оугих авторо	:	функци	A		
сификация	настоящий расчет	[3]	[4]	[12]	[10]	экспе- римент [9]	$\frac{\Sigma}{\mu} \alpha^{(+)} ^2$	$\sum_{\mu} \alpha(\mu) ^2$	$\left \sum_{\mu} \alpha^{n=3} \mu\right ^{2}$
				1S(+)				
1(-+)	57,9332 140,31	57,8649 140,6	57,94	57,8778 142,85	57,997 250	57,82	0,9403	0,05 9 4	0,0003
2(—)	62,3092 1,0955	62,8082 18,80	62,30	62,2218 5,578	$62,765 \\ 3,72$	62,15	0,0352	0,9261	0,0387
3(+)	63,0209 44,217	63,0088 32,50	63,01		 	62,95	0,9728	0,0225	0,0047
4()	64,1364 1,2466	64,1822 15,90	64,11		 		0,0268	0,9692	0,0040
5(+)	64,2096 16,150	64,2162 3,022	64,19			64,22	0,9721	0,0225	0,0024
				3.5(-	F)				
1(+-)	62,6324 0,1154	62,6205 0,1812					0,9758	0,0238	0,0004
2(—)	63,7933 0,0004	63,8222 0,0075					0,0161	0,9808	0,0031
3(+)	64,0858 0,0556	64,0763 0,0851					0,9877	0,0122	0,0001
4()	64,5836 0,0006	64,5336 0,0042					0,0120	0,9866	0,0014

Характеристики 1,3S(+) автоионизационных состояний в гелие

Состояния $^{1,3}P$ (--)

Положения и ширины ^{1,3}*P*(−)-состояний были получены путем диагонализации матрицы десятого порядка с включением конфигураций: 2snp, 2pns, 2pnd; n ≤ 5. Результаты расчетов даны в табл. 1б и 3.

Характеристики состояний: энергии *Е(эв)* и ширины Г·10³(эв) Суммы квадратов (+), (--) и (pd) компонентов волновых функций Номер состояния и (±) класрасчеты других авторов экспенастоящий расчет сификация римент [9] $\left| \alpha^{(+)}_{\mu} \right|^2$ $\sum_{\mu} |\alpha_{\mu}^{(pd)}|^2$ Σ μ $\sum_{\mu} \left| \alpha^{(-)}_{\mu} \right|^2$ [3] [11] [10] [4] 58,3599 10,64 58,4068 58,45 0,0004 58,38 58,2984 58,340,9869 0,0128 1(十) 22,037 33 8,4 63,1747 63,1412 63,12 63,097 63,08 0,95240,0005 0,0471 2(+)6,4691 3,101 2,7 63,2861 63,2757 63, 2563,274 0,0088 0,7455 0,2447 3(-)0,053 0,0361 0,0776 0,0328 64,06 0,3220 0,6454 64,1207 64,1211 64,100 4(d)0,0228 0,0045 0,0051 0,0583 5(+) 64,2718 64,2551 64,2364,22 0,9408 0,0009 2,6714 1,231 64,3336 64,32 0,0260 0,6459 0,3281 64,3450 6(-)0,0145 0,0316

Таблица 16 Характеристики ³P⁽⁻⁾ автоионизационных состояний в гелие

Таблица ів

Характеристики 1,3D(+) автоионизационных состояний в гелие

Номер состоя-	Характо	еристики сос	стояний: эне Г-10 ³ (<i>эв</i>)	Суммы квадратов (2 <i>p</i> ²), (+), () и (<i>pf</i>) компонентов волновых фунций						
ния и (+)	настоящи	й расчет	расчеты	других авт	оров	<u>.</u> ,				
класси- фика- ция	9.9	20.20	[7] [8] [13]			экспери мент [9	a2p² ²	$\sum_{\mu} \left \alpha^{(+)}_{\mu} \right ^2$	$\sum_{\mu} \left \alpha^{(-)}_{\mu} \right ^{2}$	$\sum_{\mu \mid \alpha} {(pf) \choose \mu}^2$
			·	1D(+)_		_				
1 (2 <i>p</i> ²)	60,1108 82,799	60,0584 80,709	60,115 74,8	60,025 73,2	59,993 71,8	60,0	0,7575	0,0079	0,2305	0,0002
2()	63,5974 18,001	63,5688 18,214	63,601 17,9	63,575 16,5			0,0458	0,0358	0,9003	0,0139
3(+-)	$63,9004 \\ 0,4036$	63,8795 0,7501	63,904 0,404	63,897 0,283			0,0003	0,8676	0,0285	0,1014
4()	64,4755 11,388	64,4561 10,761	64,480 11,6	$\begin{smallmatrix} 64,429\\7,1 \end{smallmatrix}$			0,0210	0,0221	0,9321	0,0217
5(+)	64,6342 0,3065	$ \begin{array}{c} 64,6234 \\ 0,6273 \end{array} $	64,638 0,311	64,557 0,168		 	0,0001	0,9198	0,0248	0,0544
				\$D(+)						
l(—)	63,1574 0,0131	63,1471 0,0140	63,157 0,012	63,141 0,0014	l		[0,0727	0,9210	0,0051
2(+)	63,7973 0,2539	63,7642 0,2344	63,797 0,253	63,796 0,248				0,8569	0,0515	0,0872
3()	64,2844 0,0050	64,2823 0,0056	64,284 0,0053	$\begin{vmatrix} 64,273\\0,0005 \end{vmatrix}$				0,0467	0,9370	0,0161
4(+-)	64,5588 0,2012	64,5419 0,1734	64,559 0,205	64,509 0,128				0,8771	0,0337	0,0877

Таблица 2

Xap	актеристики	1,3 <u>S</u> (+)	автоионизационных	состояний	гелиеподобных	нонов
-----	-------------	------------------	-------------------	-----------	---------------	-------

состояния лассифи-	Е(эв) и I	Г·10 ³ (<i>эв</i>)	Суммы и (л= вол	квадратон =3) компо ювых фун	з (+), (—) нентов ікций	<i>Е</i> (эв) и	Г·10 ³ (38)	Суммы и (л- вол	квадрато —3) комп новых фу	в (+), () онентов чкций
Номер н и (土) к кация	настоя- щий расчет	[12]	$\sum_{\mu} \alpha_{\mu}^{(+)} ^2$	$\left \sum_{\mu} \alpha^{(-)}_{\mu} \right ^2$	$\sum_{\mu} \alpha^{(n=3)}_{\mu}$	настоя- щий расчет	[12]	$\left \begin{array}{c} \Sigma \\ \mu \end{array} \right \alpha^{(+)} \mu \left ^2 \right ^2$	$\left \sum_{\mu} \left \alpha^{(-)}_{\mu} \right ^{2} \right ^{2}$	$\sum_{\mu} \alpha^{(n=3)}_{\mu}^{2}$
			Li+(1S	(+))			E	Be ²⁺ (¹ S(+	-))	
1(+-)	146,3191 195,42	146,211 172,8	0,9331	0,0667	0,0002	275,522 215,32	275,383 186,4	0,9294	0,0705	0,0001
2()	154,1994 1,3527	153,743 6,5848	0,0532	0,9216	0,0207	286,896	286,169 7,564	0,0628	0,9272	0,0100
3(+-)	159,6815 84,913		0,9592	0;0376	0,0032	300,926 103,72		0,9518	0,0461	0,0021
4()	162,1760 0,2599		0,0281	0,9698	0,0021	304,962 0,6743		0,0398	0,9586	0,0016
5(+)	163,3721 35,786		0,9728	0,0254	0,0018	308,463 48,543		0,9611	0,0376	0,0013
			_Li+(3S	(+))			E	8e ²⁺ (*S(+	-))	
1(+)	158,898 0,3038		0,9724	0,0275	0,0001	299,755 0,4044		0,9706	0,0293	0,0001
2(—)	161,099 0,0051		0,0238	0,9744	0,0018	302,993 0,0136		0,0272	0,9717	0,0011
3(+)	$163,023 \\ 0,1947$		0,9807	0,0192	0,0001	308,013 0,2878		0,9771	0,0228	0,0001
4()	163,978 0,0026		0,0171	0,9826	0,0003	309,407 0,0082		0,0213	0,9785	0,0002
	·	1	' B ³ +(¹ S	′ (+))				 }4+(1S(+))	
1(+-)	445,560 223,66	445,400 194,55	0,9272	0,0727	0,0001	656,465 227,56		0,9258	0,0742	<0,0001
2()	460,343 4,1967	459,465 8,299	0,0679	0,9261	0,0060	674,624 5,2944		0,0709	0,9251	0,0040
3(+)	486,769 112,21		0,9474	0,0511	0,0015	717,250 116,24		0,9447	0,0542	0,0011
4()	492,408 1,3211		0,0470	0,9516	0,0014	724,489 1,9497		0,0514	0,9473	0,0013
5(+)	499,465 54,269		0,9544	0,0466	0,0010	736,416 56,310		0,9506	0,0486	0,0008

Продолжение табл.

состояния лассифи-	Е(эв) и	Г·10 ³ (эв)	.Суммь и (/ во.	а квадрат 1==3) ком лновых ф	гов (+), () понентов рункций	<i>Е(эв</i>) и	Г·10 ³ (эв)	Суммы к (<i>n</i> =3) ко	вадратов мпоненто функций	(+), () и в волновых
Номер и (±) к кация	настоя- щий расчет	[12]	$\sum_{\mu \mid \alpha} \frac{ \alpha(+) ^2}{ \mu ^2}$	$\sum_{\mu} \left \alpha^{(-)}_{\mu} \right ^2$	$\sum_{\mu} \alpha^{(n=3)} \mu^2$	насто- ящий расчет	[12]	$\sum_{\mu} \left \alpha^{(+)}_{\mu} \right ^2$	$\sum_{\mu} \left \alpha^{(-)}_{\mu} \right ^2$	$\sum_{\mu} \alpha^{(n=3)} ^*$
				(+))	. <u>.</u>		• • • • • • •	C ⁴⁺ (³ S(+))	<u>.</u>
1(+-)	485,225 0,4573		0,9696	0, 030 4	<0,0001	715,341 0,4875		0,9689	0,0310	0,0001
2()	489,488 0,0213		0,0290	0,9703	0,0007	720,620 0,0273		0,0302	0,9694	0,0004
3(+)	498,859 0,3362		0,9752	0,0248	<0,0001	735,669 0,3618	1	0,9741	0,0259	<0,0001
4()	500,782 0,0144		0,0238	0,9761	0,0001	738,112 0,0197		0,0253	0,9746	0,0001

Мы не приводим результатов расчета ${}^{P(-)}$ -состояний для He, Li⁺ и Be²⁺, которые подробно обсуждались в работе [1]. Рассмотрим (d)-уровень этой серии. Его распад в гелии сильно подавлен, что объясняется компенсацией вклада отдельных 2snp и 2pns компонентов. При переходе от атома He к иону Li⁺ ширина этого уровня сильно возрастает. Это связано со значительным уменьшением веса 2pnsконфигураций в волновой функции этого уровня. Такая ситуация сохраняется для всех членов изоэлектронной последовательности вплоть до четырехзарядного иона углерода. Начиная с Li⁺ (d)-уровень меняется местами с уровнем (4⁻), а его ширина медленно растет с увеличением Z. Особенно важным оказывается сравнение результатов расчета для ${}^{3P(-)}$ с данными, полученными по методу сильной связи [2]. Заметные расхождения в значениях ширин, получаемых этими методами, существуют не только для узких резонансов, как в случае ${}^{3S(+)}$ -состояний, но и для широких.

Поведение ширины резонансов Γ в зависимости от заряда иона для различных состояний различно. Как правило, в случае уровней с большой шириной величина Γ монотонно возрастает с увеличением Z. Это соответствует простым одночастичным оценкам. Для узких резонансов в отдельных случаях наблюдается уменьшение ширины при переходе к более тяжелым ионам. Такая зависимость Γ от Z обусловлена большой чувствительностью этой величины к характеру конфигурационного смешивания.

Расчеты характеристик автоионизационных ^{1,3}*P*(-)-состояний ионов изоэлектронной последовательности гелия в литературе отсутствуют. Исключение составляет нижайшее состояние этих серий, для которого результаты работы [6] хорошо согласуются с полученными в нашей работе.

Состояния 1,3 D(+)

Расчеты ^{1,3}*D*(+)-состояний выполнены в двух вариантах. В первом варианте проводилась диагонализация матрицы на базисе конфигура-

Таблица З

	Характе	ристики	1,3P()	автоион	изацион	ных состо	эяний гел	иеподоб	бных ион	IOB
состояния лассифи-	Е(эв) и	ſ·10³ (98)	Суммы н и (р. волн	квадратов d) компон ювых фун	(+), () тентов нкций	<i>E(эв)</i> и	Γ·10 ³ (<i>э</i> в)	Суммы и (ј во.	квадратол 2d) компол лновых фу	з (+), () чентов чкций
Номер и (土) к кация	насто- ящий расчет	[6]	$\sum_{\mu} \left \alpha^{(+)}_{\mu} \right ^2$	$\sum_{\mu} \alpha^{(-)}_{\mu} ^2$	$\sum_{\mu} \alpha^{(pd)}_{\mu} ^2$	насто- ящий расчет	[6]	$\left \sum_{\mu} \alpha_{\mu}^{(+)} ^2 \right ^2$	$\sum_{\mu} \alpha^{(-)}_{\mu} ^{2}$	$\sum_{\mu} \alpha_{\mu}^{(pd)} ^2$
			_Li+(³ P(-					_Be ²⁺⁽³ P	'())	
1(+-)	147,0791 19,518	146,8655	0,9942	0,0001	0,0057	276,5606 17,296	276,3281	0,9968	0,0001	0,0032
2(- -)	159,9664 8,0188		0,9693	0,0035	0,0271	301,3208 7,8894		6,9742	0,0038	0,0220
3(—)	160,0689 0,1877		0,0018	0,7634	0,2348	301,4380 0,2638		0,0009	0,7732	0,2259
4(d)	161,8271 0,0169		0,0289	0,2500	0,7211	$304,0672 \\ 0,0089$		0,0254	0,2308	0,7438
5(+)	163,4855 3,4189		0,9510	0,0001	0,0489	308,6295 3,7532		0,9586	0,0001	0,0413
6()	$163,5873 \\ 0,0367$		0,0149	0,7082	0,2769	$308,7840 \\ 0,0725$		0,0112	0,7305	0,2583
			- B ³⁺ (¹ P(-))			- <u>_</u>	-C4+(1P())	
1(十)	453,6352 88,088		0,9799	0,0012	0,0189	666,4289 95,682		0,9863	0,0008	0,0129
2()	485,7336 0,2464		0,0001	0,9503	0,0497	715,9648 0,2473		0,0001	0,9517	0,0483
3(-⊢)	490,2365 37,912	<u> </u>	0,9092	0,0055	0,0853	721,6641 43,926		0,9171	0,0045	0,0784
4(d)	$492,0483 \\ 0,4542$		0,0942	0,0478	0,8580	723,9216		0,0861	0,0461	0,8678
5(—)	499,1013 0,1658	 	0,0001	0,9358	0,0642	735,9697 0,1701		0,0001	0,9383	0,0616
6(+)	501,0468 18,329		0,9165	0,0056	0,0780	738,4878) 	0,9295	0,0041	0,0664
			-B ³⁺ (³ P())	· · ·			_C4+(3P	-))	
l (+)	446,8730 15,743		0,9980	<0,0001	0,0020	658,0510 14,645	; ;	0,9986	<0,0001	0,0014
2(+)	487,2641 7,4987		0,9753	0,0018	0,0229	717,8398		0,9746	0,0005	0,0249
3(-)	487,4136 0,2459		0,0015	0,7805	0,2179	718,0316 0,2155	,	0,0031	0,7849	0,2120

Продолжение табл. 3

юстояния лассифи-	<i>Е(эв)</i> и	Г • 103(эв)	Суммы и (р волн	квадратов d) компон ювых фуз), () нентов нкций	<i>Е(эв</i>) и	Γ·10 ³ (эв)	Суммы и (р вол	квадрато 9d) компо новых фу	в (+), () нентов чкций
Howep c B (土) K KaLHS	настоя- щий расчет	[6]	$\left \sum_{\mu} \alpha_{\mu}^{(+)} ^{2} \right $	$\sum_{\mu} \alpha^{(-)}_{\mu} ^2$	$\sum_{\mu} \alpha_{\mu}^{(pd)} ^{2}$	настоя- щий расчет	[6]	$\left \frac{\Sigma}{\mu} \right ^{\alpha} \left \frac{\omega}{\mu} \right ^{2}$	$\left \frac{\Sigma}{\mu} \right \alpha^{(-)} \right ^2$	$\left \begin{array}{c} \Sigma \\ \mu \end{array} \right \alpha^{(pd)} \mu \right ^2$
4(<i>d</i>)	490,8875 0,0048		0,0236	0,2220	0,7544	722,3336		0,0227	0,2172	0,7601
5(+)	499,6788 3,6858	<u> </u>	0,9605	<0,0001	0,0395	$736,6732 \\ 3,4924$		0,9603	0,0001	0,0396
6(—)	499,9054 0,0922		0,0111	0,7421	0,2468	736,9818 0,1021		0,0120	0,7483	0,2397

ции 2pnp, 2snd, 2pnf; $n \leq 5$ только для Не в полном соответствии с расчетами работы Алтика и Мура [7]. Значения Г вычислены с точной энергией электрона в непрерывном спектре в отличие от работы [7], где энергия свободного электрона бралась одинаковой для всех рассмотренных состояний. Вычисленные значения Г даны в табл. 1в; они очень близки к полученным в работе [7]. Расчеты во втором варианте были выполнены для всех ионов изоэлектронной последовательности гелия с включением в число базисных состояний конфигураций, сходящихся к порогу n=3 иона — остатка: 3pnp, 3dnd, 3pnf, 3snd, $n \leq 5$; это увеличивает размерность базиса до 20. Сравнение результатов этого расчета в случае Не с первым вариантом показывает, что примешивание состояний, сходящихся к n=3, мало влияет (см. табл. 1в) на положение и ширины нижайших состояний двухэлектронного возбуждения, сходящихся к порогу n=2. Сравнение с расчетами Купера и др. [8], выполненными по методу сильной связи, указывает на существование заметных различий между результатами, полученными двумя методами в случае узких резонансов. Для более широких резонансов имеется удовлетворительное соответствие полученных данных и результатов расчета по методу сильной связи. Основные результаты расчета состояний ^{1,3}D⁽⁺⁾ в гелиеподобных ионах приведены в табл. 4.

В заключение авторы благодарят С. И. Гришанову и И. М. Круглову, принимавших участие в работе в начальной ее стадии, а также А. Ф. Никифорова и В. Б. Уварову за советы по поводу проведения вычислений.

ЛИТЕРАТУРА

- 1. Balashov V. V., Grishanova S. I., Kruglova I. M., Senashen-ko V. S. Phys. Lett., 27А, 101, 1968; Балашов В. В., Гришанова С. И., Круглова И. М., Сенашенко В. С. «Оптика и спектроскопия», 28, 859, 1970.
- 2. Burgess A. In «Autoionization», ed. by Temkin, Mono Book, Corp. Baltimore, 1966.
- 3. Burke P. G., McVicar D. Proc. Phys. Soc., 86, 989, 1965.
- 4. Lipsky L., Russek A. Phys. Rev., 142, 59, 1966. 5. Cooper J. W., Fano U., Prats E. Phys. Rev. Lett., 10, 518, 1963. 6. Chan Y. M. C., Stewart A. L. Proc. Phys. Soc., 90, 619, 1967.

			Характери	стики ^{1,3} <i>D</i>	+ автоионі	изационных с	остояний гел	иеподобны	Х ИОНОВ			
Номер состояния	<i>Е(эв</i>) н Г×	<10 ^a (<i>3e</i>)	Суммык	квадратов (2 мпонентов во	р ²), (+), (—) лиовых функ) น (<i>p</i> f) ณุหหั	<i>Е(эв</i>) н ГХ.	10 ³ (<i>38</i>)	Суммы к компон	вадратов (2р ентов волнов	^{2°}), (+), (−) зых функций	(ја) н
и (Т) класси- фикации	настоящий расчет	[13]	$\left a_{2}p^{2} \right ^{2}$	$\frac{\Sigma}{\mu} \left \frac{\alpha^{(+)}_{\mu}}{\alpha^{(+)}_{\mu}} \right ^2$	$\frac{\Sigma}{\mu} \left \frac{\alpha_{(-)}^{(-)}}{\alpha_{\mu}} \right ^2$	$\sum_{\mu \mid \alpha_{\mu}^{(pf)} \mid^{2}$	настоящий расчет	[13]	$ a_{2p^2} ^2$	$\frac{\Sigma}{\mu} \left \frac{\alpha(+)}{\alpha} \right ^2$	$\frac{\Sigma}{\mu} \left \alpha_{\mu}^{(-)} \right ^2$	$\frac{\Sigma}{\mu} \left \left \begin{array}{c} \alpha(pf) \\ \alpha \\ \mu \end{array} \right ^2$
			${Li^+(^1D(+))}$				×		Be ²⁺⁽¹ D(+	(-		
$1(2p^{2})$	150, 199 135, 09	149,952 112,5	0,8906	0,0034	0,1035	0,0003	281,156 166,43	280,790 138,1	0,9413	0,0018	0,0553	0,0002
2()	160,871 40,254		0,0377	0,0254	0,9222	0,0103	302,768 54,331		0,0275	0,0196	0,9425	0,0068
3(+)	161,498 6,1216		0,0001	0,9169	0,0267	0,0539	303,826 13,993		0,0001	0,9440	0,0218	0,0320
4()	163,835 16,00		<0,0101	0,0114	0,9532	0,0230	309,230 $22,670$		0,0071	0,0066	0,9666	0,0179
5(+)	164,0933,1459		<0,0001	0,9576	0,0131	0,0285	309,621 40,172		<0,0001	0,6333	0,0181	0,3483
			$-Li^{(3D(+))}$	(($Be^{2+(3D(+))}$	((-		1
-] [-]	159,871 0,0115			0,0898	0,9076	0,0204	301,188 0,0075			0,0984	0,9002	0,0010
2(+)	161,016 0,6569			0,8764	0,0794	0,0410	302,851 0,9487			0,8828	0,0926	0,0225
3()	163,4980,0062			0,0599	0,9272	0,0128	$308,660 \\ 0,0047$			0,0697	0,9196	0,0106
4(+)	163,8990,3310			0,8702	0,0417	0,0871	309,266 $0,5228$			0,8804	0,0534	0,0656

Таблица 4

(jd) и	$\frac{\Sigma}{\mu} \left[\alpha_{\mu}^{(pf)} \right]^{a}$		0,0001	0,0030	0,0139	0,0109	0,6978		0,0004	0,0092	0,0091	0,0480
²), (+), (-) новых функц	$\frac{\Sigma}{\mu} \left \alpha_{\mu}^{(-)} \right ^2$		0,0224	0,9639	0,0179	0,9793	0,0145		0,8933	0,1037	0,9136	0,0637
задратов (2 <i>р</i> онентов волн	$\frac{\Sigma}{\mu} \left \frac{\alpha_{(+)}^{(+)}}{\alpha_{\mu}^{(+)}} \right ^2$		0,0007	0,0167	0,9668	0,0050	0,2875		0,1061	0,8860	0,0773	0,8880
Суммы кі комп	$\left a_{2}p^{2}\right ^{2}$	$C^{4+}(^{1}D(+))$	0,9761	0,0144	<0,0001	0,0037	<0,0001	$C_{4+(3D(+))}$				
103(36)	[13]											
<i>Е(эв</i>) и Г×	настоящий расчет		665, 562 196, 95	720,301 64,905	722,426 25,951	737,771 $29,420$	738,469 3,1568		717,684 0,0032	720,364 1,2507	$736,782 \\ 0,0023$	737,832 $0,7589$
, н (pf) ий	$\left. \sum_{\mu} \right \alpha^{(\mathrm{pf})} \right ^2$		0,0001	0,0045	0,0205	0,0133	0,6246		0,0006	0,0138	0,0096	0,0532
2 <i>р</i> ²), (+), (- новых функц	$\frac{\Sigma}{\mu} \left[\left. \alpha_{\mu}^{(-)} \right ^2 \right]$		0,0337	0,9557	0,0192	0,9750	0,0160		0,8960	0,0996	0,9155	0,0604
квадрагов (? юнентов волі	$\left \begin{array}{c} \Sigma \\ \mu \end{array} \right \alpha (+) \right ^2$		0,0011	0,0175	0,9587	0,0052	0,3591		0,1032	0,8852	0,0748	0,8860
Cymmei Komi	$ a_2p^2 ^2$	B ³⁺⁽¹ D(+)	0,9642	0,0197	<0,0001	0,0051	<0,0001	R3+(3D(+)				
103(38)	[13]		452,485 156,0									
<i>Е(эв</i>) и Г×	настоящий расчет		452,931 185,03	489,230 61,460	490,801 20,835	500,538 27,210	501,067 3,2235		487,115 0,0048	489,289 1,1320	$\begin{array}{c} 499,744\\ 0,0033\end{array}$	500,572 0,6671
Номер состояния	и (土) класси- фикация		$1(2p^{2})$	2()	3(+)	4()	5()		1()	2(+)	3()	4(+-)

- Altick P. L., Moore E. N. Proc. Phys. Soc., 92, 853, 1967.
 Cooper J. W., Ormonde S., Humphrey C. H., Burke P. C. Proc. Phys. Soc., 91, 285, 1967.
 Rudd M. E. Phys. Rev. Lett., 13, 503, 1964.
 Пропин Р. Х. «Оптика и спектроскопия», 8, 300, 1960.
 Bhatia A. K., Temkin A. Phys. Rev., 182, 15, 1969.
 Perrott P. H., Stewart A. L. J. Phys., B1, No. 6, 1968.
 Perrott P. H., Stewart A. L. J. Phys., B1, 381, 1968.

.

٠

Поступила в редакцию 9.3 1970 г.

НИИЯФ

. . . <u>.</u>

ý