Веелтник московского университета

№ 3—1971

КРАТКИЕ СООБЩЕНИЯ

УДК 548.0:535

А. Я. ГОИХМАН

«ПРИМЕСНЫЕ» ЭКСИТОНЫ В КРИСТАЛЛАХ БЛАГОРОДНЫХ АТОМОВ

В работе [1] показано, что экситоны в кристаллах благородных атомов представляют собой возбужденную двухатомную молекулу, слабо деформированную окружающими атомами. В случае, когда возбуждение возникает или передается примесному атому, например Кг в кристалле Ar, возбужденное состояние также вырождено и принадлежит неприводимому представлению F_{1u} . Это означает, что снятие вырождения будет обусловлено взаимодействием с тем же самым неполносимметричным колебанием F_{2g} . В силу принципа изоэлектронности молекулярные орбитали молекулы X_2^* , соответствующие экситону основного вещества, должны перейти в аналогичные орбитали молекулы XY^* (Y — примесный атом). Поэтому целесообразно подобное образование назвать «примесным» экситоном.

На рисунке схематически изображены потенциальные кривые возбужденных молекул X_2^* , Y_2^* и XY^* , для последней приводится и потенциальная кривая основного состояния. Из рисунка видно, что положение максимума полосы люминесценции определяется следующим выражением:

$$\begin{aligned} & \hbar \omega_{\text{H}3\pi} = \min \left\{ E_X, E_Y \right\} - \\ & - D_{XY} - W_B R_{XY} \right\}, \qquad (h) \end{aligned}$$

Положение максимума полосы люминесценции примесных экс тонов, $\omega_{\rm H3,I}$ (см⁻¹)

Примесь	Кристалл		
	Ar	Kr	Xe
Ar Kr Xe	79370 65420 55150	65420 65450 55900	55150 55900 58140

Адиабатические потенциалы молекул X_2^*, XY^*, Y_2^* и XY

где E_X , E_Y — первые потенциалы возбуждения атомов X и Y, $W_B(R) = be^{-aR} - \frac{d}{R^6}$ соответствует ван-дер-ваальсовскому взаимодействию атомов X и Y, D_{XY} — энергия диссоциации молекулы.

Для оценки энергии диссоциации и равновесного расстояния между ядрами в молекуле XY* можно воспользоваться соответствующими данными для молекул X_2^* и Y_2^* . Действительно, считая связь в молекуле XY^* чисто ковалентной, что следует из изоэлектронности атомов и близости энергий диссоциации молекул X_2 для всех благородных газов, исключая Не и Ne [2], имеем

$$R_{XY} = \frac{R_{X_2} + R_{Y_2}}{2}.$$
 (2)

$$D_{XY} = \sqrt{D_{X_2} D_{Y_2}}.$$
(3)

Так как в литературе нет достоверных значений Rx_2 , то целесообразно пренебречь в (1) ван-дер-ваальсовским взаимодействием, заменив D_{XY} на Δ_{XY} — величину стоксового сдвига полосы люминесценции. В таком случае

$$\hbar\omega_{\mu_3\pi} = \min \{ E_X, E_Y \} - \sqrt{\Delta_{X_2} \Delta_{Y_2}}.$$
(4)

Рассчитанные по этой формуле положения полос люминесценции некоторых «примесных» экситонов приведены в таблице.

Анализ результатов приводит к следующим выводам: во-первых, передача возбуждения примесному атому энергетически выгодна, однако следует рассмотреть отдельно кинетику подобного процесса; во вторых, спектр люминесценции примесных экситонов несколько сдвинут в красную область, но этот сдвиг незначителен — он одного порядка с шириной полосы люминесценции.

Автор благодарен Ю. М. Попову за ценные замечания.

ЛИТЕРАТУРА

1. Гойхман А. Я. «Вестн. Моск. ун та», физ. астрон., 12, 104, 1971. 2. Топака Ү. J. Opt. Soc. Am., 45, 710, 1955.

Поступила в редакцию 23.3 1970 г.

ниияф

УДК 537.525.1

В. А. ГОДЯК, А. А. КУЗОВНИКОВ, М. А. ХАДИР

К ВОПРОСУ О «ПАРАДОКСЕ ЛЕНГМЮРА»

В настоящей работе изучается вид функции распределения электронов по энергиям в плазме положительного столба разряда низкого давления в связи с так называемым «парадоксом Ленгмюра».

В настоящее время вопрос о «парадоксе Ленгмюра» носит лишь дискуссионный характер. Имеющиеся экспериментальные данные не позволяют сделать определенных заключений о механизме этого явления.

Исследовалась плазма положительного столба разряда постоянного тока в парах ртути при давлении $p=1\cdot5\cdot10^{-3}$ мм рт. ст. В разрядную трубку с внутренним диаметром 25 мм и длиной 1 м были впаяны кольцевой зонд вплотную к стенке трубки шириной 16,5 мм и напротив него центральный цилиндрический зонд диаметром 0,3 мм и длиной рабочей части 8 мм на расстоянии 600 мм от накаленного оксидного катода. С помощью универсального прибора для зондовой диагностики плазмы (II) по методике (1) и обычной зондовой схемы измерялись зондовая характеристика центрального зонда $I_0(V)$, вторая производная зондового тока $I_0''(V)$, концентрация и температура электронов по методике Ленгмюра V_e , а также непосредственно измерялась температура быстрых электронов V'_e . Этот метод определения температуры [1] дает точные абсолютные значения V_e только в противном случае значение V'_e характеризует параметр распределения электронов по энергиям вблизи плавающего потенциала зонда, т. е. соответствует «температуре» быстрых электронов.

На рис. 1 представлены зависимости электронных компонентов зондового тока (кривая 1) и их вторых производных (кривая 2) в полулогарифмическом масштабе