$$+\left(\frac{P_{\mu}}{\mu}\right)_{ll'}\left(\frac{P_{\mu}}{\mu}\right)_{l'm}+\left(\frac{P_{\mu}}{\mu}\right)_{l'l''}\left(\frac{P_{\mu}}{\mu}\right)_{l'm}\right].$$
(11)

Отсюда указанным выше методом находим

$$(\Box + \mu^{2}) K^{+} \frac{b_{0}}{16} \left\{ C(3, 1, 2, 1) \pi^{+} \pi^{-} \pi^{+} + \frac{1}{2} [C(3, 1, 1, 1) + C(3, 2, 2, 1) - C(3, 1, 2, 1)] \pi^{+} \pi^{0} \pi^{0} \right\},$$

$$(\Box + \mu^{2}) K_{L}^{0} = \frac{b_{0}}{16} \left\{ \frac{1}{2\sqrt{2}} C(3, 2, 2, 2) \pi^{0} \pi^{0} \pi^{0} + \frac{1}{\sqrt{2}} [C(3, 1, 2, 2) + C(3, 2, 1, 2) - C(3, 1, 1, 2)] \pi^{+} \pi^{-} \pi^{0} \right\}.$$
(12)

Здесь $\varphi_3^2 = K_L^0$ — долгоживущий компонент K^0 -мезонов. После симметризации $\pi^+\pi^-\pi^+$, $\pi^+\pi^0\pi^0$ и т. д. в приближении $\mu_{\pi\pm} = \mu_{\pi^0}$ (D (3, a, b, c) = D (3, 1, 1, 1)) получаем

$$\frac{W (K^+ \to \pi^+ \pi^- \pi^+)}{W (K^+ \to \pi^+ \pi^0 \pi^0)} \simeq 3.21; \quad \frac{W (K_L^0 \to 3\pi^0)}{W (K_L^0 \to \pi^+ \pi^- \pi^0)} \simeq 1.82; \\ \frac{W (K^+ \to \pi^+ \pi^- \pi^+)}{W (K_L^0 \to 3\pi^0)} \simeq 1.78.$$
(13)

При экспериментальных значениях 3,31; 1,73; 1,08 (фазовые объемы учтены по [2]). По-видимому, распад $K_L^0 \to 3\pi^0$ испытывает сильное влияние других факторов. Переходы с $\Delta T = {}^{3}\!/_{2}$ добавляют в уравнениях для K^+ и K_L^0 соответственно члены, пропорциональные $C(3, 1, 3, 1), C(3, 1, 3, 2) \simeq 0$ (с точностью $\mu_{K^+} = \mu_{K^\circ}$ $C(3, 3, 1, 1) \simeq C(3, 3, 1, 2)$). Так как C(3, 3, 1, 1) содержит (E/μ)_{η} — то эти добавки трудно оценить. Однако если отбросить члены, содержавшие η -мезоны, то добавки будут несущественными.

Переходы с $\Delta T = \frac{5}{2}$ дают члены, пропорциональные с $C(3, 3, 3, 1) = 1 - \frac{1}{3} \left[1 + 2 \left(\frac{E}{\mu} \right)_{\eta} \right]$. Если η заменить на K_L° , то C(3, 3, 3, 1) = 0.

Как видно, столь простой механизм нелептонных слабых распадов сразу дает качественно правильный результат. Для полного согласования численных значений нужно, однако, учесть еще влияние коллективного взаимодействия на индивидуальные переходы кварков.

ЛИТЕРАТУРА

1. Курдгелаидзе Д. Ф. «Вестн. Моск. ун-та», физ., астрон., 11, № 5, 1970. 2. Ли В., Ву В. Слабые взаимодействия. М., «Мир», 1968.

Поступила в редакцию 8.9 1970 г.

Кафедра теоретической физики

УДК 621.380

М. Н. ДЕВЯТКОВ, Г. И. ОВЧИННИКОВА

О ВЫБОРЕ ПАРАМЕТРОВ ЭКВИВАЛЕНТНОГО ДИОДА

Режим существования виртуального катода в межэлектродных промежутках может представлять интерес с точки зрения чувствительности реакции такого промежутка на изменение энергетического состояния электронного пучка, например [1, 2]. Однако методов расчета характеристик, свойственных такому режиму, для реальных межэлектродных промежутков с более или менее сложной конфигурацией электродов и с учетом конечного сечения электронного пучка не существует. Следует предположить, тем не менее, что в ряде случаев можно подобрать некоторый эквивалентный идеальный плоский диод с характеристиками, близкими к характеристикам реального межэлектродного промежутка. При этом критерием эквивалентности может служить совпадение вольтамперных характеристик — экспериментальной (реального диода) и расчетной (эквивалентного диода). Совпадение вольтамперных характеристик однозначно определяет и соответствие всех прочих зависимостей, если они связаны с теми же параметрами, которые задают вид вольтамперной характеристики.

Идеальный плоский диод, эквивалентный некоему реальному межэлектродному промежутку, должен обладать зависимостью величины проходящего тока (I_0) от потенциала 2-го электрода (U2), совпадающей с аналогичной зависимостью реального промежутка. Следовательно, говоря о выборе эквивалентного диода, мы подразумеваем определение остальных его параметров: U1, d и J вх (потенциал 1-го электрода диода; расстояние между электродами и плотность входящего тока соответственно). Температура электронов в эквивалентном диоде равна температуре реального электронного пучка. Искомые параметры определяются следующим образом. Некоторые две точки экспериментальной вольтамперной характеристики (I01, U21 и I02, U22) мы считаем решениями системы, описывающей идеальный плоский диод, и находим значения эквивалентных параметров, при которых это предположение справедливо. Для описания идеального плоского диода воспользуемся системой уравнений, приведенной в работе [1] и состоящей из ассимптотических выражений типа закона «трех вторых» для α- и β-диодов [3] (по обе стороны от плоскости виртуального катода) и формулой Больцмана. Подставляя в объединенное уравнение для α- и β-диодов значения токов и потенциалов в выбранных (опорных) точках реальной вольтамперной характеристики, получим систему, позволяющую определить параметры эквивалентного диода:

$$I_{01} = \frac{aU_{21}^{3/2} \left[1 + \beta \left(\frac{T}{U_{21}}\right)^{1/2}\right] S}{\left(d - \sqrt{\frac{aU_{1}^{3/2}S}{2I_{BX} - I_{01}}}\right)^{2}},$$

$$I_{02} = \frac{aU_{22}^{3/2} \left[1 + \beta \left(\frac{T}{U_{22}}\right)^{1/2}\right] S}{\left(d - \sqrt{\frac{aU_{1}^{3/2}S}{2I_{BX} - I_{02}}}\right)^{2}},$$
(1)

где $a=2,33\cdot10^{-6} a/e^{3/2}$, $\beta=0,025 e^{1/2}/2pad^{1/2}$, S — сечение электронного пучка, когорое необходимо ввести для перехода от токов, измеряемых в реальном промежутке, к плотностям токов в идеальном диоде. Решая систему (1) относительно $U_1^{3/4}$ и $\frac{d}{\sqrt{S}}$, получаем четыре пары корней, из которых физический смысл имеет лишь одна. Остальные корни не удовлетворяют условиям задачи $\left(\frac{d}{\sqrt{S}} > 0$ и $d > \sqrt{\frac{aU_1^{3/2}S}{2I_{PX} - I_0}}\right)$. Най-

денные корни и представляют собой условия для нахождения параметров эквивалентного диода:

$$U_{1} = \left[\frac{\sqrt{a_{2}} - \sqrt{a_{1}}}{\sqrt{b_{1}} - \sqrt{b_{2}}}\right]^{4/3}; \quad \frac{d}{\sqrt{S}} = \frac{\sqrt{a_{2}b_{1}} - \sqrt{a_{1}b_{2}}}{\sqrt{b_{1}} - \sqrt{b_{2}}}, \tag{2}$$

где

$$a_{1,2} = \frac{aU_{21,2}^{3/2} \left[1 + \beta \left(\frac{T}{U_{21,2}} \right)^{1/2} \right]}{I_{01,2}}; \quad b = \frac{\alpha}{2I_{\text{BX}} - I_{01,2}}.$$

Из анализа системы для идеального плоского диода следует, что в таком диоде могут быть реализованы два различных типа вольтамперных характеристик с плавным и скачкообразным переходом в режим полного токопрохождения [4]. Система (1) записана для случая плавного перехода в режим насыщения. Если же реальная вольтамперная характеристика относится ко 2-му типу, то при подборе эквивалентного лиода в качестве одного из условий следует взять условие, характеризующее величину тока в момент скачка $|I_{01}=I_{0max}|$ [4]. В этом случае система для определения параметров эквивалентного диода будет иметь вид

$$I_{01} = I_{BX} \left(2 - \sqrt[3]{\frac{4\alpha U_1^{3/2}S}{I_{BX}d}} \right),$$
$$I_{02} = \frac{\alpha U_{22}^{3/2} \left[1 + \beta \left(\frac{T}{U_{22}}\right)^{1/2} \right]}{\left(d - \sqrt{\frac{\alpha U_1^{3/2}S}{2I_{BX} - I_{02}}} \right)^2}.$$

Рещая эту систему, получаем искомые параметры:

$$U_{1} = \left[\frac{\sqrt{a_{2}c}}{2\sqrt{b_{3}'} - \sqrt{cb_{2}}}\right]^{4/s}, \quad \frac{d}{\sqrt{S}} = \frac{2\sqrt{a_{2}b_{3}}}{\sqrt{b_{1}} - \sqrt{b_{2}}},$$
$$c = \left(2 - \frac{I_{01}}{I_{BX}}\right)^{3}, \quad b_{3} = \frac{\alpha}{I_{BX}}.$$

где

Отметим, что речь о подборе эквивалентного плоского диода может идти только в тех случаях, когда форма экспериментальной вольтамперной характеристики отвечает некоторым «критериям подобия» форме характеристики идеального диода: моно-

чает некоторым «критериям подобня» форме ларанти тонности зависимостей $I_0 = f(U_2)$ и $\frac{dI_0}{dU_2} = f(U_2)$, а также положительная кривизна

$$\left(\frac{\frac{d^2I_0}{dU_2^2}>0}{\frac{dU_2^2}{dU_2^2}}\right).$$

При выборе опорных точек на экспериментальной вольтамперной характеристике для расчета эквивалентного диода следует иметь в виду, что чем ближе выбраны 1 и 2, тем точнее алпроксимируется уча-

Рис. 1. Вольтамперные характеристики межэлектродного промежутка: 1— экспериментальная, 2— расчетная

межэлектродный промежуток, эксперименгальная вольтамперная характеристика когорого представлена на рис. 1 кривой I $(U_1=120 \ s, I_{BX}=9,9\cdot10^{-3} \ a)$. Сам промежугок с основными размерами схематически изображен на рис. 2.

сток характеристики, лежащей между ними. Для примера рассмотрим некоторый

(3)

(4)

Рис. 2. Схематическая конструкция межэлектродного промежутка: 1 электронный пучок, 2— диафрагма с сеткой (1-й электрод промежутка), 3— коллектро (2-й электрод промежутка)

Выбранная нами характеристика относится к 1-му типу. Поэтому для подбора эквивалентного диода используется система уравнений (1), записанная для точек 1

Рис. 3. Вольтамперная характеристика промежутка: х — экспериментальные точки, о — расчетные точки

и 2 (см. рис. 1). Определенные по формулам (2) параметры эквивалентного диода имеют следующие значения: $U_1=22,37$ в, $d=5,075\cdot10^{-2}$ см, $I_{\rm EX}=3,15\cdot10^{-1}$ а/см²; соответствующая им характеристика идеального модифицированного диода представлена на рис. 1 кривой 2.

Из сопоставления кривых видно их полное совпадение в интервале между опорными точками, а на остальном участке расхождение не превышает 15%.

В межэлектродном промежутке подобной же конфигурации можно реализовать при близких значениях токов и потенциалов и вольтамперную характеристику 2-го типа, если несколько изменить его размеры (например, увеличить диаметр коллектора на 1 мм). Соответствующая этому случаю вольтамперная характеристика представлена на рис. 3. Расчет параметров эквивалентного диода при этом проводился по формулам (4). Выбирая в качестве опорных точек точки 1 и 2, находим $d = 8,089 \cdot 10^{-2}$, $U_1 = 77,8 \ end{figure}, I_{B_X} = 3,5 \cdot 10^{-1} \ a/cm^2$. В данном случае точки расчетной кривой совпадают с экспериментальными вдоль всей вольтамперной характеристики (см. рис. 3).

ЛИТЕРАТУРА

- 1. Девятков М. Н., Овчинникова Г. И. «Вестн. Моск. ун-та», физ., астрон., 11, № 1, 1970.
- 2. Костиенко А. И., Девятков М. Н., Пирогов Ю. А. «Электронная техника», электроника СВЧ, № 2, 1967.
- Гвоздовер С. Д. Теория электронных приборов сверхвысоких частот. М., ГИТТЛ, 1956.
- Девятков М. Н., Овчинникова Г. И. «Электронная техника», электроника СВЧ (в печати).

Поступила в редакцию 25.1 1971 г.

Кафедра радиотехники

УДК 621. 11

Н. Г. ГОНЧАРОВА, Г. С. САГИЯН

СТРУКТУРА ДИПОЛЬНОГО РЕЗОНАНСА НА ЯДРЕ ¹³С В ПРИБЛИЖЕНИИ ПРОМЕЖУТОЧНОЙ СВЯЗИ

Характерной чертой сечений фотонуклонных процессов на ядрах конца *p*-оболочки является существование так называемого «пигми» резонанса, лежащего на 10— 12 Мэв ниже основного максимума. Хотя качественная интерпретация этой картины как проявления расщепления *p*-оболочки очевидна, количественная оценка распределения сечений вызвала определенные трудности. Проделанный расчет дипольных состояний в ядре ¹³С на базе 1p+2p-1h конфигураций дает для относительной интенсивности дипольных переходов в область «пигми» резонанса во много раз заниженный результат [1]. Положение было исправлено путем искусственного увеличения потенциала остаточного взаимодействия для состояний, соответствующих возбуждению $2^+ T=0$ уровня кора — ядра ¹²С.

В работах [2] был предложен метод расчета дипольных возбуждений ядер на базисе волновых функций промежуточной связи. В этом подходе расщепление диполь-

121