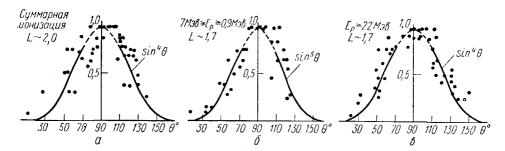
ся неизменным вдоль силовой линии [2], для улучшения статистики при построении экспериментальных распределений (см. рис.) суммировались данные для различных участков в L, B-пространстве. Далее распределения нормированных интенсивностей аппроксимировались кривыми вида $\sin^m \theta$, где m=1, 2, 3, 4 и т. д. Как видно из графиков, разброс экспериментальных значений достаточно велик, что объясняется деточностью показаний магнитометра, конечной величиной апертуры приборов ($\sim 40^\circ$)



(соответствующие части аппроксимирующих кривых проведены пунктиром) и этклонением значений L на $\pm 0,2$ от $L{=}$ const при суммировании данных из различных интервалов

Приведенная аппроксимация питч-угловых распределений захваченных частиц на высотах полета спутника «Космос-219» функцией вида $\sin^n \theta$ является достаточно хорошей при значениях $m \simeq 4 \div 5$, что не противоречит оценкам, приведенным в [2].

ЛИТЕРАТУРА

- 1. Савенко И. А., Савун О. И., Шаврин П. И. «Геомагнетизм и аэрономия», 9. № 2, 236, 1969.
- Вакулов П. В., Горчаков Г. В., Логачев Ю. И. «Космические лучи», № 6, 94, 1965.

Поступила в редакцию 6.9 1971 г.

ФКИИН

УДК 539.12

Б. Қ. КЕРИМОВ, В. П. ЦВЕТКОВ

ЭЛЕКТРОМАГНИТНЫЕ ПОПРАВКИ К ЛЕПТОННЫМ РАСПАДАМ НЕЙТРАЛЬНЫХ ВЕКТОРНЫХ МЕЗОНОВ

В данной заметке, являющейся развитием [1], показывается, что при интерпретации экспериментальных данных по лептонным модам распадов нейтральных векторных мезонов ($V=\rho^0,~\omega,~\phi\rightarrow e^+e^-;~\mu^+\mu^-$) существенную роль играет учет радиационных поправок к парциальным ширинам распадов $\rho^0,~\omega,~\phi$ -мезонов на электрон-позитронную (или мюонную) пару.

нами получено следующее выражение:

$$\Gamma(V \to l^+ l^-) = \Gamma_0 + \Gamma_r = \Gamma_0 (V \to l^+ l^-) \left[1 - \frac{2\alpha}{\pi} \delta_l(\lambda) \right], \tag{1}$$

где $(l = e \, \text{или } \mu)$:

$$\delta_l(\lambda) = \left(2 \ln \frac{m_V}{m_l} - 1\right) \left(\ln \frac{m_l}{\lambda} - 1\right) + \ln^2 \frac{m_V}{m_l} +$$

$$+\frac{1}{2}\ln\frac{m_{V}}{m_{l}} - \frac{2}{3}\ln\frac{m_{V}^{2}}{m_{e}m_{\mu}} - \frac{\pi^{2}}{3} + \frac{10}{9}, \qquad (1')$$

$$\Gamma_{0}(V \to l^{+}l^{-}) = \frac{\alpha^{2}}{12}\left(\frac{4\pi}{\gamma_{V}^{2}}\right)m_{V} + O\left(\left(\frac{m_{l}}{m_{V}}\right)^{4}\right); \alpha = \frac{e^{2}}{\hbar c} = \frac{1}{137}.$$

Здесь Γ_0 — парциальная ширина распада $V \to t^+ l^-$, полученная в [2, 3], m_V , m_e и m_μ — массы векторного мезона, электрона и мюона, λ — малая масса фотона, введенная для устранения инфракрасной расходимости. При получении (1') мы пренебрегли членами порядка $(m_\mu/m_V)^2 \sim 10^{-2}$ в формулах (5) и (6) работы [1]. Для устранения фиктивной массы λ фотона нам необходимо к выражению (1) добавить парциальную ширину распада $V \to t^+ l^-$, сопровождающегося испусканием мягкого фотона с энергией $\lambda \leqslant \varepsilon_V \leqslant \Delta E_V$ электроном и позитроном. Причем $\lambda \ll \Delta E_V \ll E_\pm$, где E_\pm — энергия позитрона (электрона).

электроном и позитроном. Причем $\lambda \ll \Delta E_{\gamma} \ll E_{\pm}$, где E_{\pm} — энергия позитрона (электрона). В системе покоя векторного мезона парциальная ширина распада $V \to l^+ l^-$ с излучением мягкого фотона $\Gamma_{\Delta E_{\gamma}}$ равна с точностью до членов порядка $(m_l/m_V)^2$:

$$\Gamma_{\Delta E_{\gamma}}(V \to l^{+}l^{-}\gamma) = \frac{2\alpha}{\pi} \left[\left(2 \ln \frac{m_{V}}{m_{l}} - 1 \right) \ln \frac{2\Delta E_{\gamma}}{\lambda} - \ln^{2} \frac{m_{V}}{m_{l}} + \ln \frac{m_{V}}{m_{l}} - \frac{\pi^{2}}{6} \right] \Gamma_{0}(V \to l^{+}l^{-}). \tag{2}$$

Складывая (1) и (2), получаем суммарную радиационную поправку ${\bf k}$ парциальной ширине в системе покоя V-мезона, свободную от инфракрасной расходимости

$$\Gamma'(V \to l^+ l^-) = \Gamma + \Gamma_{\Delta E_{\gamma}} = \Gamma_0 (V \to l^+ l^-) \left[1 - \frac{2\alpha}{\pi} \delta_l \right], \tag{3}$$

где

$$\delta_l = \left(2 \ln \frac{m_V}{m_l} - 1\right) \left(\ln \frac{m_V}{2\Delta E_{\gamma}} - \frac{3}{4}\right) - \frac{2}{3} \ln \frac{m_V^2}{m_e m_{\mu}} + \frac{49}{36} - \frac{\pi^2}{6}.$$
 (3a)

В численных оценках величины δ максимальную энергию мягкого фотона ΔE_{γ} надо положить равной экспериментальному разрешению по инвариантной массе пары Δm_{j+1} - в системе покоя V-мезона.

Эксперименты по наблюдению распада $V \rightarrow e^+e^-$ [4] проводятся при большем импульсе V-мезона и используется метод детектирования симметричных пар распада $E_+ = E_- = \frac{E_V}{2}$, $\theta_+ = \theta_-$, где E_V — энергия векторного мезона, θ_\pm — углы вылета

электрона и позитрона. В последнем случае в поправке (3a) член $\ln \frac{m_V}{2\Delta E_{\gamma}}$ замени-

тся на $\ln \frac{E_V}{2\Delta E_V}$, а остальные члены останутся прежними. Легко показать, что

$$\frac{m_V}{2\Delta m_{e^+e^-}} = \frac{E_V}{2\Delta E_{\gamma}}.$$

Подставляя в (3a) значения масс векторных мезонов $m_{
ho}=765$, $m_{\omega}=783$ и $m_{\phi}=1019$ мэв и величины разрешения по массе $\Delta m_{e^+e^-}=5$ и 20 мэв, достигнутом в экспериментах по наблюдению распадов $ho^{\circ} \to e^+e^-$, $\omega \to e^+e^-$ и $\phi \to e^+e^-$ [4, 5] находим численные оценки радиационных поправок к распадам $V \to e^+e^-$:

$$\frac{2\alpha}{\pi} \delta_e (\rho^0 \to e^+ e^-) = 20\%, \ \frac{2\alpha}{\pi} \delta_e (\omega \to e^+ e^-) = 21\%, \ \frac{2\alpha}{\pi} \delta_e (\phi \to e^+ e^-) = 13\%.$$
 (4)

Согласно (3) и (4) получаем следующие значения для исправленных парциальных ширин распадов:

$$\Gamma'(\rho^{\circ} \to e^{+}e^{-}) = 8.5 \text{ Kab}, \ \Gamma'(\omega \to e^{+}e^{-}) = 1.09 \text{ Kab}, \ \Gamma'(\varphi \to e^{+}e^{-}) = 1.62 \text{ Kab}.$$
 (5)

 ${
m Ha}$ основании экспериментов по фоторождению ${\it V}$ -мезона получены следующие значения ширин лептонных распадов [4]:

$$\Gamma_{\text{SKC.}}(\rho^0 \to e^+e^-) = 6.8 \pm 1 \text{ M}, \ \Gamma_{\text{SKC.}}(\omega \to e^+e^-) = 0.87 \pm 0.19 \text{ KJB},$$

$$\Gamma_{\text{SKC.}}(\phi \to e^+e^-) = 1.42 \pm 0.32 \text{ KJB}.$$
(6)

Используя (3a) и предполагая $\Delta E_{m{\gamma}} = \Delta m_{J^+J^-}$ одинаковые для обоих видов распада $V
ightarrow \mu^+\mu^-$ и $V
ightarrow e^+e^-$ имеем для разности радиационных поправок к электронным и мюонным модам распадов V-мезона:

$$\frac{2\alpha}{\pi} \delta_e - \frac{2\alpha}{\pi} \delta_{\mu} = \frac{4\alpha}{\pi} \left(\ln \frac{m_{\mu}}{m_e} \right) \left(\ln \frac{m_V}{2\Delta E_{\nu}} \right)$$
 (7)

Из (4) и (7) следует, что радиационная поправка $\frac{2\alpha}{\pi} \delta_{\mu}$ к мюонным распадам $V \to \mu^+\mu^$ будет составлять примерно 1,2% при выборе $\Delta m_{\ l^{+}\ l^{-}}=10$ мэв.

Формула (3а) отличается своей простотой от полученной нами в [1] формулы (7) для δ_l . Чтобы убедиться в точности формулы (3a), проведем численный расчет поправки $\frac{2\alpha}{\pi}$ δ_l для электронного распада $V \to e^+e^-$ по двум формулам при одних и тех же параметрах. При $\Delta E_{\gamma}=10$, $m_V=770$, $m_e=0.51$ и $m_{\mu}=106$ мэв из (3a) получаем значение $\frac{2\alpha}{\pi}$ $\delta_e=$ =0,154, а из выражения (7a) работы $[1]-\frac{2\alpha}{\pi}\delta_e=0,163$.

2. Изменение парциальной ширины распада $V \to l^+ l^-$ влечет за собой изменение константы γ_V модели векторной доминантности. Обозначив исправленную константу связи $V-\gamma$ через γ_V , имеем из (3):

$$\frac{\gamma_V^{\prime 2}}{4\pi} = \frac{\gamma_V^2}{4\pi} \left(1 - \frac{2\alpha}{\pi} \delta_l \right). \tag{8}$$

Здесь $\gamma_V^2/4\pi$ — константа связи V — γ без учета радиационных поправок, которая определяется из выражения Γ_0 [4]:

$$\frac{\gamma_{\rho}^2}{4\pi} = 0.50, \quad \frac{\gamma_{\omega}^2}{4\pi} = 4.0, \quad \frac{\gamma_{\varphi}^2}{4\pi} = 3.1. \tag{9}$$

Из (8), (9) и (4) получаем для исправленных констант связи γ_V :

$$\frac{{\gamma_o'}^2}{4\pi} = 0.40, \quad \frac{{\gamma_o'}^2}{4\pi} = 3.2, \quad \frac{{\gamma_\phi'}^2}{4\pi} = 2.7.$$
 (8a)

Первое правило сумм Вайнберга [6] $\frac{1}{3} m_{
ho}^2/\gamma_{
ho}^2 = m_{\omega}^2/\gamma_{\omega}^2 + m_{\phi}^2/\gamma_{\phi}^2$ для констант связи γ_V выполняется с точностью 25%. Учет радиационных поправок к константам связи $\gamma_V = (\gamma_0)$ γ_{ω} , γ_{ϕ}) по формуле (8) уменьшает это расхождение до 17%.

ЛИТЕРАТУРА

- 1. Керимов Б. К., Цветков В. П. «Ядерная физика», 12, вып. 4, 821, 1970.
 2. Nambu Y., Sakurai J. J. Phys. Rev. Lett., 8, 79, 1962.
 3. Gell-Mann M., Sharp D., Wagner W. G. Phys. Rev. Lett., 8, 261, 1962.
 4. Тинг С. Ч. Ч. В сб.: «Проблемы физики элементарных частиц и атомного ядра», т. 1, вып. 1. М., «Атомиздат», 1970.
 5. Сб. «Электромагнитные взаимодействия и структура элементарных частиц». М.,
- «Мир», 1969.
- 6. Weinberg S. Phys. Rev. Lett., 18, 1507, 1967.

Поступила в редакцию 6.9 1971 г.

Кафедра теоретической физики