Вестник московского университета

№ 6-1972

_ _ _ _

УДК 596.21.208

С. Р. АТАЛЛА, С. Н. БАНЧИЛА, Н. П. ДОЗОРОВА, Л. П. ФИЛИППОВ

ОБ ИЗМЕРЕНИИ КОМПЛЕКСА ТЕПЛОВЫХ СВОЙСТВ МЕТАЛЛОВ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ МЕТОДОМ ПЕРИОДИЧЕСКОГО НАГРЕВА Новый способ обработки результатов

Рассматривается новый метод обработки результатов измерения комплекса тепловых свойств металлов (температуропроводность, теплоемкость и теплопроводность) при высоких температурах в экспериментах с использованием периодического нагрева при П-образной модуляции. Приведены результаты измерений температуропроводности жидкого индия в интервале температур 1100÷2100° К.

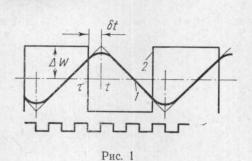
В последнее время в практике теплофизических исследований получают развитие методы определения тепловых характеристик (теплопроводности, температуропроводности и теплоемкости), основанные на использовании периодического нагрева [1, 2]. К достоинствам таких методов следует отнести непрерывное воспроизведение данных, возможность внутреннего контроля результатов, малость поправки на теплообмен и др. Существует несколько разновидностей методов периодического нагрева, отличающихся конфигурацией поля температуры и формой периодического сигнала. В ряде вариантов применяется, в частности, П-образная модуляция мощности [3, 4]. Такая модуляция, как правило, значительно более проста в осуществлении, чем гармоническая, но требует применения для обработки результатов сравнительно трудоемких методов гармонического анализа.

В данной статье рассматривается новый метод обработки результатов измерений для таких экспериментов, свободный от этого недостатка. Новый метод обеспечивает почти десятикратную экономию во времени по сравнению с использованным ранее способом обработки и дает возможность по-новому подойти к анализу результатов измерений, позволяет посмотреть на получаемые данные с несколько иных позиций.

Новая интерпретация эксперимента с периодическим П-образным нагревом основывается на том, что кривые изменения температуры, являющиеся источником информации о тепловых свойствах среды, в подавляющем большинстве имеют четко выраженный линейный участок. Для примера на рис. 1 приведена кривая измерения температуры на внешней поверхности полого металлического цилиндра, внутренняя поверхность которого нагревается с помощью электронной бомбардировки, управляемой П-образным сигналом (кривая 2).

Наличие участка с линейным нагревом (охлаждением) означает, что в пределах полупериода процесса в образце успевает установиться так называемый регулярный режим второго рода [5]. Для этого режима характерно, что скорость изменения температуры всех точек образца постоянна. Рассмотрение этой стадии процесса может дать полную информацию о тепловых характеристиках изученного материала.

В работе [6] было показано, что угол наклона прямолинейных участков кривой изменения температуры, т. е. скорость нагрева, дает возможность определить в этих экспериментах теплоемкость. Ниже мы покажем, что взаимное положение линий нагрева и охлаждения позволит определить и температуропроводность. Величина температуропроводности однозначно определяется отрезком δt на осциллограмме, подобной рис. 1.



Рассмотрим теорию метода применительно к эксперименту с радиальными температурными волнами (предельным переходом мы можем получить и случай нагрева плоских образцов). Пусть внутренняя поверхность полого цилиндрического образца нагревается источником, мощность которого за полупериод изменяется от $+\Delta W$ до $-\Delta W$ (см. рис. 1).

Рассмотрим малые отклонения от средней температуры, соответст-

вующей средней мощности

$$\theta = T - \overline{T} \ll \overline{T}. \tag{1}$$

Условие на нагреваемой поверхности будет иметь вид

$$\Delta W = -\lambda \frac{\partial \theta}{\partial r} \Big|_{r=R_1} 2\pi R_1 L, \tag{2}$$

тде λ — теплопроводность, L — длина образца.

Граничные условия на второй поверхности $(r=R_2)$ запишем в виде

$$\frac{\partial \theta}{\partial r} = 0 \mid_{r=R_2}. \tag{3}$$

Тем самым мы пренебрегаем малыми изменениями теплообмена в пределах полупериода изменения мощности. (Наличие линейного режима нагрева и охлаждения подтверждает возможность такого пренебрежения.) Уравнение теплопроводности в регулярной стадии для $\vartheta = \theta - Kt$ будет иметь вид

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{d\theta}{dr} \right) = \frac{K}{a},\tag{4}$$

где K — скорость нагрева. В общем решении этого уравнения фигурируют две постоянных C_1 и C_2 :

$$\theta = \frac{Kr^2}{4a} + C_1 \ln r_1 + C_2. \tag{5}$$

Условия (2) и (3) позволяют расшифровать одну из этих констант выразить K через ΔW :

$$K = \frac{2a\Delta W R_1^{\gamma}}{\lambda \left(R_2^2 - R_1^2\right)}. (6)$$

Существование в (5) постоянного члена, не определенного условиями (2) и (3), является следствием «наследства» нерегулярной фазы, ролью процесса начальных условий. Для нахождения константы необходимо учесть в какой-то форме начальные условия. Это можно сделать, воспользовавшись уравнением интегрального баланса, приравняв вве-

денное в образец количество тепла $Q = \int\limits_0^t W dt$ изменению энтальпии:

$$\int_{V} C_{\rho} \left(\theta - \vartheta_{0} \right) dV \tag{7}$$

(интегрирование по объему образца), где ϑ_0 — распределение температуры, которое было в начальной стадии процесса (для t=0).

В результате получаем

$$\bar{\theta} = \bar{\vartheta}(r),$$
(8)

откуда

$$C_2 = \frac{K}{8a} \left(R_2^2 - R_1^2 \right) - \frac{K}{2a} \frac{R_2^4}{R_2^2 - R_1^2} \ln \frac{R_2}{R_1} + \frac{K}{4a} R_2^2. \tag{9}$$

Таким образом, уравнение асимптоты периодической кривой в фазе нагрева имеет вид

$$\vartheta(R_2, t) = \vartheta_0 + Kt - \frac{K}{8a} (R_2^2 + R_1^2) + \frac{K}{2a} \frac{R_1^2 R_2^2}{R_2^2 - R_1^2} \ln R_2 / R_1.$$
 (10)

Для кривой охлаждения можно получить аналогичное выражение:

$$\vartheta = \theta_0 + 2K\tau - Kt + \frac{K}{8a} \left(R_1^2 + R_2^2 \right) - \frac{K}{2a} \frac{R_1^2 R_2^2}{R_2^2 - R_1^2} \ln \frac{R_2}{R_1}, \quad (11)$$

где τ — момент времени, соответствующий перемене полярности сигнала мощности. При выводе (11) учтено, что начальным распределением температуры для кривой охлаждения ϑ_0' является $\vartheta(r, \tau)$, определяемое выражением (10).

Формулы асимптот (10) и (11) определяют точку их пересечения. Для времени от $t=\tau$ до точки пересечения получается формула

$$\delta t = \frac{R_2^2}{8a} \left[1 + S^2 + \frac{4S^2}{1 - S^2} \ln S \right], \tag{12}$$

где $S = R_1 | R_2$. Отсюда может быть определена температуропроводность. При $S \to 1$ эти формулы переходят в формулу для плоского слоя:

$$\delta t = \frac{L^2}{6a} (L -$$
толщина слоя). (13)

Как сами формулы, так и способ их получения оказываются значительно более простыми, чем в случае, когда производится рассмотрение того же процесса с точки зрения регулярного режима третьего рода [2].

Оценку времени установления линейного режима удобно сделать, руководствуясь известным общим решением для плоского слоя [7]. Из имеющихся графиков можно видеть, что практически выход на линейный режим происходит за F_0 =0,2, т. е. кривые рис. 1 со своими асимп-

тотами сближаются через 2—3 значения δt. Аналогичный порядок должны иметь эти величины и для цилиндрической задачи, что подтверждается результатами эксперимента.

Способ определения температуропроводности по пересечению асимптот прямолинейных участков кривых оказывается намного более удобным по сравнению с методом, основанным на применении гармони-

Температуропроводность молибдена

Темпера- тура °К	Фазовый метод	Новый метод	
	τ=3,4 сек	τ=3,4 сек	т=6,7 сен
1705	0,31	0,32	0,30
1709 1727	0,31 0,29	0,33	0,32

ческого анализа, и позволяет значительно экономить время.

Помимо этого следует отметить и еще одно положительное качество нового способа. Из (12) следует, что величина δt на осциллограмме не зависит от величины периода колебаний температуры, т. е. рассматриваемый способ определения температуропроводности мало пригоден для выбора периода колебаний. Определение a оказывается возможным для таких медленных колебаний, при которых применение обычного фазового способа обработки данных практически исключено. Это выгодно в тех случаях, когда амплитуда колебаний недостаточна и ее желательно увеличить (например, при низких температурах). В принципе рассматриваемая схема может быть применена и к сколь угодно медленному процессу, ограничением является лишь увеличение роли теплообмена и связанного с этим искривления прямолинейных участков.

Эффективность и качество нового способа обработки данных были проведены в работе [7] в сопоставлении с методом гармонического анализа.

В таблице сопоставлены значения *а* для Мо, получаемые по формуле (13) в верхних и нижних участках периодических кривых, и значения, полученные фазовым способом. Воспроизводимость значений температуропроводности для нового способа обработки данных не только не уступает воспроизводимости для использованного ранее метода, но и, как правило, превосходит ее.

Частным вопросам, имеющим отношение к рассматриваемому здесь способу обработки экспериментальных данных при измерении комплекса тепловых свойств жидких металлов, является вопрос об учете роли стенок измерительного тигля, о виде поправок к температуропроводности и теплоемкости на внутреннюю и внешнюю стенки. Рассмотрим сначала роль внутренней стенки (рис. 2,a).

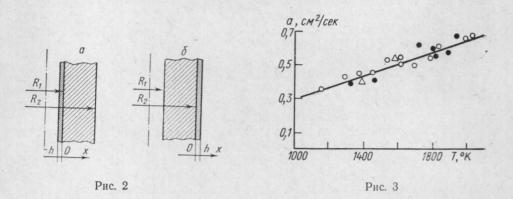
Запишем уравнение температуропроводности в стенке в виде

$$\frac{d^2\theta}{dx^2} = K/a_{\rm c}.$$

Стенка рассматривается как плоский слой, так как $h/R_1 \ll 1$, где h — толщина стенки, a_c — температуропроводность материала стенки. Решение этого уравнения должно проводиться совместно с уравнением теплопроводности в жидком металле (4) со следующими граничными условиями:

$$1. - \lambda_{_{\rm M}} \frac{\partial \theta}{dr} = 0|_{r=R_2}$$
 (малость роли излучения на внешней поверхности).

- 2. $-\lambda_{\rm c} \left. \frac{d\theta}{dx} \right|_{x=-h} = q$ (нагрев на внутренней стороне поверхности). 3. $\theta_{\rm c} = \theta_{\rm M}$ при $r=R_{\rm 1}$, x=0 (равенство температуры стенки и металла на
- поверхности раздела).
- 4. $\lambda_{\rm M} \frac{d\theta}{dr} = \lambda_{\rm c} \frac{d\theta}{dx}$, $r = R_1$, x = 0 (равенство тепловых потоков).



Уравнение теплового баланса запишется в виде

$$qt = M_{\rm M}C_{\rm M}^{\frac{1}{2}} \frac{2}{R_{2}^{2} - R_{1}^{2}} \int_{R_{1}}^{R_{2}} r\theta_{\rm M} dr + M_{\rm c}C_{\rm c} \int_{0}^{h} \theta_{\rm c} dx + M_{\rm c} (Kt - \theta_{\rm c}).$$

Все постоянные интегрирования находятся из граничных условий и уравнения теплового баланса.

Поправка к теплоемкости находится из следующего уравнения:

$$\frac{\Delta C}{C} = \frac{\Delta K}{K} = \frac{M_{\rm c}C_{\rm c}}{M_{\rm c}C_{\rm c} + M_{\rm m}C_{\rm m}},\tag{14}$$

где $M_{\rm c}C_{\rm c}$, $M_{\rm m}C_{\rm m}$ — теплоемкость стенки и металла соответственно. Для температуропроводности поправка определяется по следующей формуле:

$$\frac{\Delta a}{a} = \frac{M_{\rm c}C_{\rm c}}{M_{\rm c}C_{\rm c} + M_{\rm m}C_{\rm m}} \frac{\left[\frac{(R_2^2 - R_1^2)}{2R_1} \frac{\lambda_{\rm m}}{\lambda_{\rm c}} \frac{h}{2}\right]}{\left[\frac{1}{8} (R_2^2 - R_1^2) - \frac{1}{2} \frac{R_1^2 R_2^2}{R_2^2 - R_1^2} \ln \frac{R_2}{R_1}\right]}.$$
(15)

Поправка на внешнюю стенку (рис. 2,6). Постановка задачи аналогична задаче о внутренней стенке. Граничные условия записываются в следующем виде:

1.
$$q = -\lambda_{M} \frac{d\theta}{dr}\Big|_{r=R_{1}};$$
 2. $\lambda_{c} \frac{d\theta}{dx}\Big|_{x=h} = 0;$
3. $\theta_{M} = \theta_{c} x = 0 \ r = R_{2};$ 4. $\lambda_{M} \frac{d\theta}{dr} = \lambda_{c} \frac{d\theta}{dx}\Big|_{x=0, r=R_{2}}.$

Для поправки к теплоемкости получается формула, тождественная формуле (15). Поправка к температуропроводности определяется следующей формулой:

$$\frac{\Delta a}{a} = \frac{\frac{R_2 h \lambda_c}{2a_c \lambda_M} \left[\frac{R_1^2}{R_2^2 - R_1^2} \ln \frac{R_2}{R_1} - \frac{1}{2} \right]}{\left(\frac{R_1^2}{8a_M} + \frac{R_1^2 R_2^2}{4a_M (R_2^2 - R_1^2)} \ln \frac{R_2}{R_1} \right)}.$$
(16)

Вывод приведенных формул оказывается более простым, чем расчет соответствующих поправок в теории метода регулярного режима третье-

го рода.

В заключение приведем результаты измерения температуропроводности Іп (при серии измерений), полученные с помощью рассмотренного метода (рис. 3, О и \bullet — экспериментальные точки). Состав индия следующий: $\text{Си} \sim 6 \cdot 10^{-6}$, $\text{Ni} < 2 \cdot 10^{-5}$, $\text{Pb} \sim 3 \cdot 10^{-5}$, $\text{Cd} < 3 \cdot 10^{-6}$, $\text{Sn} \sim 10^{-4}$, $\text{Tl} < 5 \cdot 10^{-4}$, $\text{Zn} < 2 \cdot 10^{-5}$, $\text{Fe} < 5 \cdot 10^{-5}$, $\text{Al} < 3 \cdot 10^{-5}$, $\text{Mg} \sim 4 \cdot 10^{-5}$, $\text{Mn} < 10^{-6}$, $\text{Ga} \sim 10^{-4}$, $\text{Ag} \sim 10^{-6}$, $\text{Bi} \sim 3 \cdot 10^{-5}$.

ЛИТЕРАТУРА

- 1. Филиппов Л. П. Исследования теплопроводности жидкостей. Изд-во МГУ, 1970.
- 2. Филиппов Л. П. Измерение тепловых свойств твердых и жидких металлов при высоких температурах. Изд-во МГУ, 1967.

3. Юрчак Р. П., Филиппов Л. П. «Инженерно-физический журнал», 7, № 4, 84, 1964.

4. Макаренко И. Н., Арутюнов А. В., Филиппов Л. П. «Заводская лабо-

ратория», № 9, 1969. 5. Кондратьев Г. М. Тепловые измерения. М.— Л., Машгиз, 1957. 6. Юрчак Р. П., Филиппов Л. П. «Измерительная техника», 3, 42, 1970. 7. Дозорова Н. П. Дипломная работа. МГУ, 1970.

Поступила в редакцию 21.5 1971 г.

Кафедра молекулярной физики