Вестник московского университета

And =

№ 3-1973

УДК 537.525

E CAR

Э. М. РЕЙХРУДЕЛЬ, Г. В. СМИРНИЦКАЯ, Л. Р. КУРБАНОВА

ИЗМЕРЕНИЕ ЭФФЕКТИВНОГО КОЭФФИЦИЕНТА КАТОДНОГО РАСПЫЛЕНИЯ В РАЗРЯДЕ С ОСЦИЛЛИРУЮЩИМИ ЭЛЕКТРОНАМИ В ИНЕРТНЫХ ГАЗАХ

Исследуется распыление катодов в разряде с осциллирующими электронами принизких давлениях в инертных газах. Измерено распределение эффективного коэффициента катодного распыления N_3 по радиусу катодов из Ag, Mo, Ta, Ti, Ni, в Ar, He, Xe. Получена зависимость от параметров разряда. Оценена роль захвата ионов вразных областях катодов.

Одним из процессов, определяющих механизм откачного действия в разряде с осциллирующими электронами, является распыление катодов, бомбардируемых ионами газа. В работе [1] рассмотрены результаты измерения эффективного коэффициента катодного распыления N_{θ} в таком разряде в азоте.

Величина N_{9} определяется истинным распылением металла (N); захватом части ионов (N_{3}) , бомбардирующих катод; напылением металла $(N_{\rm H})$ с противоположного катода и обратной диффузией $(N_{\rm H})$ захваченных атомов. Она может быть представлена в виде алгебраической суммы нескольких компонентов:

$$N_{g} = N - N_{H} + N_{\pi} - N_{3} = \frac{n_{ap} - n_{aH}}{n_{i}} + \frac{\Delta m_{\pi} - \Delta m_{3}}{m_{a} n_{i}}, \qquad (1)$$

где n_i — число ионов, падающих на поверхность катода в 1 сек, $n_{\rm ap}$ и $n_{\rm ah}$ — числа атомов металла, распыленного ионами газа, и атомов, напыленных с противоположного катода в 1 сек, Δm_3 и $\Delta m_{\rm g}$ — масса ионов газа, захваченных и десорбированных катодом в 1 сек, m_a — масса атома металла.

В [1] было показано, что N_{3} распределен неравномерно по радиусу катода. При откачке неинертных газов существенную роль играет хемисорбция. В случае инертных газов откачка происходит в основном за счет захвата газовых атомов электродами [2, 3].

В [4] показано, что примерно 80% аргона улавливается катодом и около 20% — анодом. Джепсен [5] объясняет возможность захвата атомов инертных газов анодом тем, что сюда поступают быстрые атомы, упруго рассеянные после нейтрализации ионов вблизи поверхности като-

дов. Доля упруго рассеянных катодом атомов инертных газов зависит от соотношения масс бомбардирующих ионов и атомов металла [6].

В настоящей работе исследуется распределение N_{\Im} по радиусу катода в зависимости от параметров разряда. Измерения производились с инертными газами (Ar, Xe, He); катоды были из Mo, Ag, Ta, Ti, Ni и нержавеющей стали.

Результаты экспериментов и их обсуждение

При низких давлениях газов ($p < 10^{-4}$ мм рт. ст.) и соответственно малых разрядных токах процесс распыления катодов идет медленно, и измерения потребовали бы много времени, в течение которого сохранение одинаковых условий в разряде было бы затруднено. Поэтому была сконструирована разрядная трубка, позволяющая вести параллельные измерения с катодами из разных материалов.

На рис. 1 показана схема экспериментальной трубки, содержащей восемь разрядных промежутков. Один из катодов каждого промежутка

Рис. 1. Схема экспериментальной трубки с восемью разрядными промежутками: a — схема трубки со шлифом, б — расположение электродов восьми промежутков, c — катодная кассета с помещенными в нее катодами из разных металлов и разделенными на концентрические кольца (r_a =10 мм, r_k =10 мм, расстояние от катода до центра разрядного промежутка d=15 мм)

был разделен на пять концентрических колец, ширина которых 2—2,5 мм. Катоды из определенного металла закладывались в специальные кассеты; разрядные промежутки для исключения взаимного напыления разделялись друг от друга экранами (рис. 1, в). Противоположный катод всех промежутков был из молибдена. Аноды промежутков были разделены по электрической схеме, и разрядные токи в промежутках измерялись и контролировались раздельно.

На рис. 2, а приведены значения N_{ϑ} для разных металлов, бомбардируемых ионами Ar в разряде при двух значениях магнитного поля H. При слабых H (330 эрст) и $p > 10^{-4}$ мм рт. ст. N_{ϑ} имеет максимальное значение в центре катода и уменьшается к его периферии. Это объясняется тем, что наряду с распылением катода одновременно происходит и напыление на него металла с противоположного катода. При данных условиях в разряде плотность тока в центральной части катода велика (рис. 2, б) и напыляющийся сюда металл сбивается бомбардирующими ионами. На периферийных же частях катодов плотность ионного тока

Рис. 2. а — зависимость N(r) для разных металлов при различных значениях магнитного поля H, $V_a=1,5 \ \kappa \beta$, $p=2\cdot 10^{-4} \ Mm$ рт. ст., прямая — 600 и пунктир — 330 эрст. 1 — Ag, 2 — Ni, 3 — Ti, 4 — нержавеющая сталь, 5 — Мо и 6 — Ta; 6 — зависимость разрядного тока I от H и распределение плотности тока j по r, I - j(r) при H=330 эрст и II - j(r) при 600 эрст

мала, количество распыляемых атомов металла меньше количества напыляемых с противоположного катода. Это приводит к отрицательному значению $N_{\rm o}$.

С увеличением H все большее число электронов удерживается в объеме, электрическое поле вдоль оси z ослабляется, энергия ионов, бомбардирующих центральную часть катода, а также ионный ток на нее уменьшаются, плотность тока на периферийные части увеличивается. Это сопровождается уменьшением N_{2} в центре и возрастанием на некотором расстоянии от него (рис. 2, a, кривые для H = 600 эрст).

На рис. З дана зависимость $N_{\rm o}(r)$ для двух значений давления. При давлении $p < 10^{-4}$ мм рт. ст. основная ионизация происходит в тонком кольцевом слое около поверхности анода, ионы начинают бомбардировать в основном периферийные участки катода. Доля ионов больших энергий, идущих в центральную часть катода, уменьшается, поэтому $N_{\rm o}$ здесь меньше.

На рис. 4 представлены кривые $N_{9}(r)$ для Ag, бомбардируемого ионами различных газов (Ar, Xe, He, N₂). Из рисунка видно, что $N_{9}(r)$ растет с увеличением массы бомбардирующих ионов. Это можно объяснить увеличением импульса, передаваемого ионом, вследствие увеличения его массы и вместе с тем увеличением энергии, связанным с изменением распределения потенциала в разрядном промежутке (рис. 4, δ).

1400 600 200 r, MM ат ион N. 3 a 2.5 2,2 1,6 1,2 0.8 0.6 0,4 0.2 6 8 10 F, MM

Рис. 3. Зависимость N(r) для разных металлов при различных значениях $p \cdot V_a = 1,5 \, \kappa s$, $H = 330 \, spcr$ Ar; прямая $p = 2 \cdot 10^{-4} \, \text{мм} \, pr. \, cr.$ и пунктир — $p = 3 \cdot 10^{-5} \, \text{мм} \, pr. \, cr.$ I - Ag, 2 — нержавеющая сталь, 3 — Mo, 4—Ti, 5—Ta, 6 — Ni Рис. 4. Зависимость N(r)для Ag в разных газах, $a: p=2\cdot10^{-4}$ мм рт. ст., $V_a=1,5$ кв, H=600 эрст. $I - Xe, 2 - N_2, 3$ — Ar; 4 — He. 6: распределение потенциала внутри разрядного промежутка в тех же условиях для разных газов

При разряде в Хе $N_{a}(r)$ в центральной части катода сильнее понижается, чем при разряде в Не.

Для объяснения особенностей кривых $N_{\mathfrak{d}}(r)$ рассмотрим влияние различных процессов (формула (1)) на величину эффективного коэффициента катодного распыления с учетом соотношения масс, бомбардирующих ионов и атомов, бомбардируемого металла.

Расчет N_{θ} произведен с учетом закона косинуса и соотношения площадей катодных колец. В таблице приведены эффективные коэффициенты катодного распыления для ячеек с катодами из Мо в разрядах с аргоном и ксеноном и катодом из серебра в разряде с гелием. Из таблицы видно, что в случае аргона $N_{\theta}(r)$ меняется с расстоянием от центра катода, причем для центрального штифта он близок по величине к чистому коэффициенту распыления N. Например, для четвертого кольца N_{θ} приобретает отрицательный знак, т. е. преобладает захват ионов газа и напыление металла с противоположного катода. Большие значения N, полученные для последнего кольца катодов в Ar (N=1) и в Xe (N=6), объясняются тем, что поверхность этого кольца не является чисто металлической; она покрыта слоем, состоящим из металла, насыщенного газами. Этот слой связан с кристаллической структурой основного металла катода, он легко стирается, отщепляется,

	S, см ² 10 ²	I _i , a 10 ⁶	п _і , _{сек} -1 10-14	т _і , г.сек-1 10 ⁸	<u>N</u> , ат ион	$n_{a'}$ $ce\kappa^{-1}$ 10^{-14}	т _а , г.сек-1 10 ⁸	п _н , сек ⁻¹ 10 ⁻¹²	т _н , г∙сек-1 10 ¹⁰	Δ <i>m</i> , <i>г.сек</i> -1 10 ³	N _Э , ат ион
№ кольца	газ — аргон; материал катода — Мо; <i>H</i> — 330 <i>эрст</i>										
0 1 2 3 4	3 25 50 98 135	46 200 85 39 8	$ \begin{array}{c} 2,84\\12,6\\5,4\\2,46\\0,5\end{array} $	1,88 8,3 3,6 1,62 0,33	0,45 0,45 0,45 0,45 1,0	1,28 5,7 2,4 1,1 0,5	-2 -9 -3,3 -1,17 -0,79	1,0 9,3 18,6 36 50	1,58 1,44 29,0 57 79	-1,66 -4,44 -1,66 -0,56 +0,28	$\begin{array}{c} 0,42\pm 0,07\\ 0,31\pm 0,05\\ 0,29\pm 0,05\\ 0,30\pm 0,05\\ 0,37\pm 0,06\end{array}$

газ — ксенон; материал катода — Мо; H — 330 эрст

$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	3 25 50 98	40 185 87 31 6	$\begin{array}{c ccccc} 2,5 & 5,45 \\ 11,6 & 25,0 \\ 5,4 & 12,0 \\ 1,94 & 4,2 \\ 0 & 38 & 0.8 \end{array}$	1,41,41,41,46	3,5 17,5 7,6 2,7 2 3	$ \begin{array}{r} -5,6 & 3,3 \\ -27,0 & 27,0 \\ -12,0 & 55,0 \\ -4,3110,0 \\ 3,6148,0 \end{array} $	5,2 43,5 87,0 172,0 235,0	-1,36 -5,5 -5,0 -3,6 0,45	$0,37\pm0,060,32\pm0,050,60\pm0,11,25\pm0,20,12\pm0,02$
4	135	6	0,38 0,8	6	2,3	3,6 148,0	235,0	0,45	$0,12\pm0,02$

газ — гелий; материал катода — Аg; H — 600 эрст

0 1 2 3 4	3 25 50 98 135	16 88 85 88 54	1,1 5,5 5,3 5,5 3,4	0,07 0,36 0,35 0,36 0,22	0,9 0,9 0,9 0,9 0,9	0,99 4,96 4,75 4,95 3,05	-1,78 -8,9 -8,5 -8,9 -5,5	0 0 0 0	0 0 0 0	-1,8 -7,6 -8,2 -7,8 -2,4	$\begin{array}{c} 0,92\pm 0,15\\ 0,8\pm 0,13\\ 0,8\pm 0,13\\ 0,82\pm 0,13\\ 0,25\pm 0,04 \end{array}$
-----------------------	----------------------------	----------------------------	---------------------------------	--------------------------------------	---------------------------------	--------------------------------------	---------------------------------------	------------------	------------------	--------------------------------------	---

S — площадь кольца, I_i — ток на кольцо, n_i — число ионов, бомбардирующих в сек, m_i — масса бомбардирующих ионов в сек, N — истинный коэффициент катодного распыления; n_a и m_a — число и масса выбитых атомов металла в сек; $n_{\rm H}$ и $m_{\rm H}$ — число и масса атомов, напыленных с противоположного катода; Δm — измеренное изменение массы катода в сек; N_9 — эффективный коэффициент катодного распыления, $m_{\rm Ar}$, $m_{\rm Xe}, m_{\rm He}, m_{\rm Mo}, m_{\rm Ag}$ — массы атомов, равные соответственно 6,66 $\cdot 10^{-23}$ г, 2,18 $\cdot 10^{-22}$ г, 6,7 $\cdot 10^{-24}$ г, 1,6 $\cdot 10^{-22}$ г и 1,8 $\cdot 10^{-22}$ г. (Напряжение на аноде $V_a = 1500$ в, $p = 2 \cdot 10^{-4}$ мм рт. ст.; длина анода $l_a = 20$ мм, радиус анода $r_a = 10$ мм, јрасстояние от центра промежутка до катода d = 15 мм.)

а когда на него попадает пучок ионов, он, распыляясь, выделяет большое количество газа. Последнее в наших опытах было порядка 10¹⁶ молекул в 1 сек.

В случае бомбардировки ионами Хе N_9 в центре уменьшается. Это связано с тем, что масса ионов Хе больше, чем масса атомов Мо; поэтому увеличивается число и общая масса ионов, захваченных решеткой металла.

В случае бомбардировки катодов ионами Не вследствие малости массы ионов Не компоненты N_3 , $N_{\rm H}$, $N_{\rm g}$ становятся малыми, и N_3 почти на всей поверхности катода, кроме последнего (периферийного) кольца, приблизительно равен истинному коэффициенту катодного распыления.

В заключение следует сделать некоторые выводы.

Эффективный коэффициент катодного распыления в разряде с осциллирующими электронами в инертных газах распределен неравно-

мерно по радиусу катода и зависит от параметров разряда (p, H, V_a) .

При увеличении Н и уменьшении р область больших значений $N_{\theta}(r)$ смещается от центра к средним областям катода. Максимальное значение $N_{a}(r)$ возрастает с увеличением массы бомбардирующих ионов.

Опыты с различными металлами катодов показали увеличение N_а, по мере заполнения d-оболочки атомов металла. Большие значения Na получены для Ag, Cu, Ni. Полученная зависимость аналогична известной из литературы зависимости N (m₂).

Полученные результаты необходимо учитывать при рассмотрении механизма откачного действия разряда с осциллирующими электронами и при конструировании ионных насосов.

Авторы выражают благодарность Л. Н. Ерехинской за большую помощь при организации экспериментов и при оформлении работы.

ЛИТЕРАТУРА

ейхрудель Э. М., Смирницкая Г. В., АН СССР», серия физич., **35**, № 2, 414, 1971. Курбанова Л. Р. «Изв. 1. Рейхрудель Э. М.,

АН СССР», серия физич., 35, № 2, 414, 1971.
2. Lafferty J. M., Vanderslice T. N. «Proc. IRE», 49, No. 7, 1136, 1961.
3. Bächler W., Hennig H. Proc. 4-th Intern. Vac. Congr. Manchester. 1968, 365; Bächler W. «Vakuum-Technik», 17, No. 3, 59, 1968.
4. Andrev D., Sethna D. R., Weston I. F. Proc. 4-th Intern. Vac. Congr. Manchester, 1968, 337; Andrev D. «Brit. J. Appl. Phys.», D-2, No. 11, 1609, 1969.
5. Jepsen R. L. Proc. 4-th Int. Vac. Congr. Manchester, 1968, 327.
6. Snoek C. G., Kistemaker J. «Adv. in Electr. and Electr. Phys.», 21, 67, 1965.

Поступила в редакцию 10.8 1971 г.

Кафедра общей физики для естественных факультетов.