Вестник московского университета

nue -----

№ 4 - 1973

УДК 536.750:53.519.25

А. А. БЕДНЯКОВ, А. Ф. ТУЛИНОВ

ОБ УЧЕТЕ ВЛИЯНИЯ ПЕРЕЗАРЯДКИ ИОНОВ НА ПРОЦЕСС ИХ МНОГОКРАТНОГО РАССЕЯНИЯ ПРИ НИЗКИХ ЭНЕРГИЯХ

Рассматривается возможность учета эффекта перезарядки ионов в процессе многократного рассеяния с помощью введения в теорию «эффективного угла экранирования» < χ_a >. Для пучка ионов с известным зарядовым составом этот параметр определяется как среднее взвешенчое значений «парциальных углов экранирования» $\chi_a^{(i)}$ характеризующих рассеяние ионов с различным полным зарядом *i*. Каждая из величин $\chi_a^{(i)}$ получается в результате рассмотрения взаимодействия иона в соответствующем зарядовом состоянии с атомом мишени. Количественные расчеты выполнены для ионов гелия и водорода в алюминии. Полученные результаты хорошо согласуются с имеющимися экспериментальными данными.

В предыдущих работах [1, 14] при описании многократного рассеяния ионов с энергией менее 300 кэв/нуклон на малые углы методом Мольера — Бете [2]) учитывалось влияние экранирования полей ядер рассеивающихся частиц электронами путем замены заряда ядер ионов Z_1 некоторым «среднеэффективным» зарядом Z_{эфф}. Было показано, $Z^2_{a\phi\phi}$ $i^2 \leq Z^2_{abb} \leq Z^2_1$ подбором величины пределах ЧТО В (i² — среднеквадратичный заряд ионов в пучке при зарядовом равновесии) можно получить теоретическую функцию углового распределения рассеянных частиц H_T(θ), совпадающую с экспериментальной функцией $H_{2}(\theta)$ по ширине, но несколько отличающуюся от нее по форме.

Величина $\overline{Z}_{a\phi\phi}$, необходимая для получения такого согласия, вообще говоря, зависит как от рода ионов (Z_1), так и от их энергии и заранее не известна.

В настоящей работе описан более общий (и менее формальный) способ учета экранирующего влияния электронных оболочек рассеивающихся ионов при анализе их многократного рассеяния на малые углы методом Мольера — Бете. Основу этого способа составляет рассмотрение взаимодействий с атомами мишени ионов в различных зарядовых состояниях, реализующихся в процессе рассеяния, и последующее усреднение характеризующих эти взаимодействия параметров с учетом зарядового состава пучка. Никаких «свободных параметров» при этом не вводится. Конкретные расчеты выполнены для случаев рассеяния ионов ⁴Не и ⁴Н в алюминии; их результаты сравниваются с данными измерений [3, 14].

Параметром, который в теории Мольера характеризует особенности взаимодействия двух сталкивающихся частиц, является «угол экранирования» χ_a . Вводится он посредством соотношения

$$\ln \chi_a = \frac{-1}{2} - \lim_{\chi_m \to \infty} \left[\int_0^{\chi_m} q(\chi) \frac{d\chi}{\chi} - \ln \chi_m \right], \tag{1}$$

где $q(\chi)$ — отношение действительного сечения рассеяния на угол (χ) к резерфордовскому сечению. Вид функции $q(\chi)$ зависит от потенциальной энергии взаимодействия $W_{12}(r)$ налетающей частицы (1) с атомом-рассеивателем (2), выражение для которой в самом общем виде может быть записано так:

$$W_{12}(r) = \mp \left(Z_1 Z_2 e^2 / r \right) \omega_{12}(r), \tag{2}$$

где $\omega_{12}(r) \leq 1$ — «функция взаимного экранирования» (или «фактор экранирования»), характеризующая ослабление кулоновского взаимодействия ядер иона (Z_1e) и атома (Z_2e) за счет экранирующего действия электронов их оболочек. Если налетающая частица лишена оболочки, то фактором экранирования в (2) будет служить функция экранирования рассеивающего атома $\omega_2(r)$. Эгот случай и был рассмотрен Мольером [4]. Взяв в качестве функции $\omega_2(r)$ функцию экранирования Томаса — Ферми, Мольер аппроксимировал ее выражением вида

$$\omega_{\mathrm{T}-\Phi}(r) \simeq \sum_{j=1}^{3} c_j \exp\left[-r/a_j\right] \equiv \omega_{\mathrm{M}}(r), \qquad (3)$$

в котором c_i и a_i — постоянные, и получил для χ_a формулу

$$\chi_a = (\lambda_1/a_2) \sqrt{1,13+3,76\alpha_1^2},$$
 (4)

где $\alpha_1 = Z_1 Z_2 e^2 / (\hbar v_1)$ и $a_2 = 0.885 a_0 Z_2^{-1/3}$ (λ_1 и v_1 — длина волны и скорость налетающей частицы, $a_0 = 0.529 \cdot 10^{-8} c_M$).

Как показали измерения, проводившиеся с различными ионами (H, D, He, O, Ar) при больших энергиях [5—8], когда практически все движущиеся в мишени частицы являются неэкранированными ядрами, теория Мольера хорошо описывает их многократное рассеяние в алюминии и более тяжелых мишенях.

При относительно низких энергиях вследствие перезарядки ионы в рассеивающемся пучке могут иметь оболочки из различного числа электронов n_e . Каждому состоянию иона с полным зарядом $ie = (Z_1 - n_e)e$ соответствуют при этом свои условия взаимодействия с атомом мишени, т. е. своя функция $\omega_{12}^{(l)}(r)$ и свое значение угла экранирования $\chi_a^{(l)}$.

Изменение условий экранирования при изменении зарядового состояния ионов можно учесть, найдя некоторое усредненное («эффективное») значение угла экранирования $\langle \chi_a \rangle$, которое могло бы в среднем характеризовать все происходящие акты рассеяния. Поскольку в проходящем через вещество пучке ионов после первых же столкновений устанавливается зарядовое равновесие [9], то статистические веса значений $\chi_a^{(i)}$ при этом усреднении естественно считать пропорциональным долям $F_{i\infty}$, которые составляют ионы с зарядом *i* в равновесном пучке при данной энергии. Таким образом, величину $\langle \chi_a \rangle$ можно определить с помощью соотношения

$$\langle \chi_a^2 \rangle = \sum_i F_{i\infty} \cdot (\chi_a^{(i)})^2, \qquad (5)$$

где суммирование производится по всем зарядовым состояниям, реализующимся в процессе перезарядки ионов при данных условиях.

Значения $\chi_a^{(i)}$, необходимые для вычисления $\langle \chi_a^2 \rangle$ по формуле (5), могут быть найдены, если известны соответствующие функции $\omega_{12}^{(i)}(r)$; чтобы при этом можно было использовать метод Мольера [4], последние должны быть представлены в виде суммы (3).

Для упрощения задачи определения энергии взаимодействия пары ион-атом $W_{12}(r)$ будем считать, что собственные функции экранирования обеих частиц $\omega_m(r)$ (m=1, 2) также представлены в виде (3). Тогда величина $W_{12}(r)$ будет равна сумме энергий попарного взаимодействия «частиц», поле каждой из которых определяется одним из членов выражений для $\omega_m(r)$ и имеет вид

$$V_{mj}(r) = \mp \frac{Z_{mj}e}{r} \exp\left[-\frac{r}{a_{mj}}\right] = \mp \frac{Z_{mj}e}{a_0 y} \exp\left[-k_{mj} \cdot y\right], \quad (6)$$

где $y = r/a_0$ и $Z_{mj} = c_{mj}Z_m$ (так что $k_{mj} = a_0/a_{mj}$ и $\sum_i Z_{mj} = Z_m$).

Предположим, что, каждая из упомянутых «частиц» представляет собой неполяризующуюся систему со сферически симметричным распределением заряда, обеспечивающим создание поля (6). Тогда классическое рассмотрение приведет к следующему выражению для энергии взаимодействия двух частиц (1j + 2k):

$$w_{jk}(y) = \mp \frac{Z_{1j}Z_{2k}e^2}{a_0 y} \omega_{jk}(y) = \mp \frac{Z_{1j}Z_{2k}e^2}{a_0 y} \cdot \frac{k_{1j}^2 e^{-k_{1j}y} - k_{2k} e^{-k_{2k}y}}{k_{1j}^2 - k_{2k}^2}.$$
 (7)

Если обратиться к известной формуле Бора, предложенной им для расчетов движения в веществе осколков деления тяжелых ядер [10], то можно получить другое выражение для $\omega_{jk}(y)$. Согласно Бору, функция взаимного экранирования для двух частиц, обладающих полями типа Вентцеля — Юкавы (т. е. определяемыми выражением (6), при условии $a_{mj} = a_m = 0,885 \ a_0 Z_m^{-1/a}$ и $Z_{mj} = Z_m$) имеет вид ехр [$-r/a_{12}$], где «длина экранирования» a_{12} определена как $a_{12} = 0,885 \ a_0 (Z_1^{2/3} + Z_2^{2/3})^{-1/a}$. Отметив, что это выражение для a_{12} эквивалентно соотношению $a_{12}^{-2} = a_1^{-2} + a_2^{-2}$, предположим, что последнее справедливо для любых значений a_{mj} в формуле (6). Тогда функция $\omega_{ik}(y)$ будет иметь вид

$$\omega_{jk}(y) = \omega_{\rm B}(y) = \exp\left[-y \,\sqrt{k_{1j}^2 + k_{2k}^2}\right]. \tag{8}$$

В дальнейшем для вычисления функций взаимного экранирования будем использовать оба выражения (7) и (8).

Рассмотрим случай рассеяния ионов ⁴Не в алюминии. Для описания поля атома рассеивателя воспользуемся функцией экранирования Мольера [4] и запишем ее в виде

$$\omega_2(y) \equiv \omega_M(y) = 0,1 e^{-15,9y} + 0,55 e^{-3,19y} + 0,35 e^{-0,8y}$$
, (см. рис. 1,5) (9)

где $y=r/a_0$.

Для иона ⁴Не возможны 3 зарядовых состояния — i=0, +1 и +2; из них последнее соответствует неэкранированному ядру, так что для него собственная функция экранирования $\omega_1^{++}(y) \equiv 1$, функция взаимного экранирования $\omega_{12}^{++}(y) \equiv \omega_2(y)$ и величина χ_a^{++} определяется непосредственно по формуле Мольера.

Электростатическое поле иона He⁺¹ может быть рассчитано как поле водородоподобного атома, а поле атома He⁰ — с помощью фор-

мулы, полученной исходя из волновой функции Хиллерааса (см., например, [11]). Найденные в результате этих расчетов функции $\omega_1^+(y)$ и $\omega_1^{(0)}(y)$ аппроксимируем следующими выражениями типа (3):

$$\omega_1^+(y) \simeq 0,475 \, e^{-3,1y} + 0,525 \, e^{-0,01y}, \quad (\text{He}^{+1});$$
 (10)

$$\omega_1^{(0)}(y) \simeq 2,54 \, e^{-3,09y} - 1,53 \, e^{-4,33y} - 0,01 \, e^{-2,56y}, \quad (\text{He}^\circ).$$
(11)

Первое из них представляет расчетную функцию с точностью $\leq 4\%$, а второе — с точностью $\leq 6\%$ в пределах $0 \leq y \leq 5$. Используем выражения (9)—(11) для получения функций взаимного экранирования пар He⁺— Al и He⁰— Al. С помощью формулы (7) найдем:

$$\omega_{12}^+(y) \simeq 0,102 \, e^{-15,9y} + 4,986 \, e^{-3,19y} - 4,26 \, e^{-3,09y} + 0,172 \, e^{-0,8y}, \quad (\text{puc.}1, 3)$$

$$(y) \simeq 0,098 e^{-15,9y} - 2,39 e^{-4,33y} + 23,63 e^{-3,19y} - 20,3 e^{-3,09y} +$$

$$+0,006 e^{-2,56y}+0,044 e^{-0.8y},$$
 (рис. 1, 1) (12)

а с помощью формулы (8) -

$$\omega_{\rm b}^+(y) \simeq 0.1 \, e^{-16y} + 0.26 \, e^{-4.45y} + 0.455 \, e^{-3.19y} + 0.185 \, e^{-0.8y}, \quad ({\rm puc.}\ 1.4)$$

 $\omega_2^{(0)}$

$$\omega_{\rm b}^{(0)}(y) \simeq 0,1 \ e^{-16y} - 0,84 \ e^{-5,38y} + 0,86 \ e^{-4,46y} - 0,0055 \ e^{-4,09y} + 0,889 \ e^{-3,19y} - 0,0035 \ e^{-2,68y}.$$
(pic. 1, 2) (13)

Рассчитанные по формулам (12) и (13) функции приведены на рис. 1. Как видно, различие между функциями $\omega_{12}^+(y)$ и $\omega_{5}^+(y)$ мало; функции же $\omega_{12}^{(0)}(y)$ и $\omega_{5}^{(0)}(y)$ отличаются одна от другой заметно больше: первая спадает несколько круче и при $y \simeq 1$ переходит в отрицательную область, имея неглубокий и пологий минимум в районе $r \sim 1,5 a_0$. По-видимому, это является следствием приближений, сделанных при получении формулы (7), в частности пренебрежением поляризацией атомов при столкновении.

Предположим далее, что, как и в случае рассеяния неэкранированных ядер, зависимость величин $\chi_a^{(i)}$ от энергии ионов может быть достаточно хорошо выражена формулой

$$\chi_{a}^{(l)} = (\lambda_{1}/a_{0}) \sqrt{A_{\alpha}^{(l)} + B_{\alpha}^{(l)} \alpha_{1}^{2}}.$$
 (14)

Проведя расчеты функций $q^{(i)}\chi$, соответствующих условиям экранирования (12) и (13), для случаев $\alpha_1 = 0$; 10 и 20 (с помощью асимптотических формул Мольера [4]) и выполнив численное интегрирование согласно (1), найдем величины коэффициентов $A_{\alpha}^{(i)}$ и $B_{\alpha}^{(i)}$. Они представлены в табл. 1; в последней строке таблицы (i=2) даны коэффициенты из формулы (4), увеличенные в $(a_0/a_2)^2$ раз.

Прежде чем использовать полученные результаты для анализа экспериментальных данных, отметим следующее. Для энергий, при которых перезарядка движущихся в среде ионов играет существенную роль, величина α_1 , как правило, намного превосходит 1, так, что в выражении (14) величиной $A^{(i)}_{\alpha}$ можно пренебречь¹ и формулу (5) записать в виде

Таблица 1

i	$\omega_{_{12}}^{(i)}(y)$	$A^{(i)}_{\alpha}$	$B^{(i)}_{\alpha}$		
0	(12)	13,2	41,6		
1	(13)	15,8	54,0 50,4		
2	(13)	8,0	26,5		
-	(10)	.,.	20,1		

$$\langle \chi_a^2 \rangle \simeq (\lambda_1/a_0)^2 \alpha_1^2 \langle B_\alpha \rangle,$$
 (15)

где $\langle B_{\alpha} \rangle = \sum_{i} F_{i \infty} B_{\alpha}^{(i)}$. В результате «эффективное число соударений» $\Omega_{b} =$

 $=\chi_{c}^{2}/\chi_{a}^{2}=(4\pi Nt\alpha_{1}^{2}\lambda_{1}^{2})/\chi_{a}^{2}$, с которым «параметр формы» в функции углового распределения рассеянных частиц $H_{T}(\theta)$ связан соотношением $B-\ln B=$ = $\ln \Omega_{b}-0,154...$ [2], будет определяться выражением [1]

$$\Omega_b = \chi_c^2 / \langle \chi_a^2 \rangle \simeq 4\pi a_0 N t / \langle B_\alpha \rangle = 212 t / (M_2 \langle B_\alpha \rangle), \tag{16}$$

где t — толщина (в mz/cm^2) и M_2 — атомный вес рассеивателя (Nt — число атомов на 1 cm^2 поверхности). Отсюда следует, что зависимость формы функции $H_T(\theta)$ от энергии частиц E сохраняется вплоть до самых малых значений E в виде зависимости от зарядового состава пучка. В обычной же теории Мольера, равно как и в варианте с заменой

¹ Отношение $A_{\alpha}^{(i)}/B_{\alpha}^{(i)} \alpha_1^2$ становится < 0,01 при $\alpha_1 \ge 5,5$, а для ионов Не в Al при энергии < 0,5 Мэв $\alpha_1 > 11$.

2 ВМУ, № 4, физика, астрономия

401

Рис. 2. Контурные значки — из [3, 14], зачерненные — $\omega_{12}^{(i)}$ по формуле (7), зачерненные наполовину — по (8); *а*—ионы Не: � — № 1—3, **Ш** — 4 — 7, **▲**—8—9, ♥ —10—18 и • — 19—20 по табл. 2; б — сплошные линии — по формуле (7), пунктир — (8); в — ноны Н: **Ш** — 183; **▲**— 81,8 и • — 51,5 *мг/см*²

101-

 Z_1 на $Z_{\Im\Phi\Phi}$, где характер экранирования определяется только оболочкой атома-рассеивателя, эта зависимость исчезает, как только величина α_1 становится $\gg 1$ [1].

Расчеты с помощью формул (15) и (16) были выполнены для всех экспериментально исследованных случаев рассеяния ионов ⁴He в Al [14]; при этом использовались оба набора значений $B_{\alpha}^{(i)}$ приведенных в табл. 1. Величины Ω_b определялись в каждом случае для средней энергии ионов в мишени $\overline{E}=0,5$ $(E_0+E_K)^{-1}$ $(E_0$ и E_K — энергии частиц до и после прохождения мишени).

Значения коэффициентов $212/(M_2 < B_\alpha >) = 7,85/<B_\alpha >$, соответствующих данной величине \overline{E} , находились с помощью графиков их зависимостей от энергии (рис. 2,6). Последние были рассчитаны на основании известных данных о зарядовом составе пучка ионов Нє в A1 [12], экстраполированных в области малых энергий. В остальном процедура получения функций угловых распределений рассеянных частиц $H_T(\theta)$ не отличалась от описанной ранее [2, 3].

Рис. 2, б наглядно демонстрирует интересную особенность влияния перезарядки ионов Не на их рассеяние при различных энергиях. Поскольку различия в величинах коэффициентов $B_{\alpha}^{(+)}$ и $B_{\alpha}^{(0)}$ сравнительно невелики (причем $B_{\alpha}^{(+)} > B_{\alpha}^{(0)}$), то при энергиях менее ~ 350 кэв, когда состав пучка определяется в основном ионами Не⁺ и Не⁰, средняя величина $\langle B_{\alpha} \rangle$ очень слабо зависит от энергии ионов, имея пологий максимум в области, где преобладают ионы Не⁺. В соответствии с этим величина $O_b = 7,85$ $t/\langle B_{\alpha} \rangle$ достигает минимального значения в районе ~ 250 кэв, причем полное изменение ее в экспериментально исследованном интервале (50—300 кэв) не превышает 10%.

Результаты расчетов представлены в табл. 2 и на рис. 2 и 3. Там же для сравнения приведены данные эксперимента и результаты расчетов по обычной теории Мольера, взятые из работы [14]. Как видно, использование для расчета взаимодействия сталкивающихся частиц выражения (7) приводит в результате к хорошему согласию между полуширинами $\theta_{0,5}$ теоретических $H_T(\theta)$ и экспериментальных $H_3(\theta)$ функций угловых распределений рассеянных ионов (в том числе и для самых тонких мишеней), где величина Ω_b всего лишь ~5 ($B \sim 2,5$). В случае применения формулы (8) согласие несколько хуже, хотя и остается фактически в пределах ошибок эксперимента (~5%).

Во всех случаях, однако, рассчитанные функции $H_T(\theta)$ несколько отличаются от измеренных распределений $H_{\vartheta}(\theta)$ по форме. Характер этого различия тот же, что и при расчетах с использованием $\overline{Z}_{\vartheta\Phi\Phi}$, хотя величина его слегка меньше. Вообще говоря, уменьшение числа столкновений (Ω) в результате учета экранирования полей ядер ионов должно приводить к изменению формы функций $H_T(\theta)$ в нужную сторону. Однако в рассматриваемых случаях в результате этого уменьшения величи́ны Ω_b даже для самых толстых мишеней становятся ≤ 20 , так что параметр *B* всегда <4,5. При этом точность расчетов $H_T(\theta)$ по формуле Мольера ухудшается, что, по-видимому, сказывается прежде

¹ Полученные таким образом значения Ω_b практически совпадают с найденными пу- E_k тем численного интегрирования выражения $(212/M_2) \int_{E_0} \langle B_\alpha \rangle^{-1} (dE/dt)^{-1} dE$, поскольку при изменении энергии E величина $\langle B_\alpha \rangle$ меняется достаточно медленно и плавно (см. рис. 26).

2*

Таблица 2

N₂	t, мг/см²	E ₀ , кэв	Е, кэв	(⁰ 0,5) ₉ , мин	χ _c , <i>мин</i>	По теории Мольера ($\omega_{12} = \omega_{M}$)		ω ₁₂ ⁽ⁱ⁾ πο (7)			ω ₁₂ ⁽ⁱ⁾ по (8)			
						$\Omega_{_{m heta}}$	В	η _м	$\Omega_{_{\mathcal{B}}}$	В	η'	$\Omega_{_{_{\!$	В	໗″
1	105	293	233	218'	157'	31,0	4,92	0,88	17,9	4,21	0,98	20,2	4,37	0,96
2	105	239	183	285'	203'	31,0	4,92	0,89	18,0	4,22	0,99	20,5	4,38	0,97
3	89,5	239	190	254'	177'	26,5	4,72	0,93	15,3	4,01	1,04	17,4	4,18	1,02
4	81	154,5	120	372'	272'	24,0	4,60	0,90	14,2	3,92	1,01	16,5	4,11	0,98
5	78	151,5	121	363'	263'	23,0	4,53	0,93	13,7	3,86	1,03	15,8	4,05	1,00
6	73,5	293	250	150'	119'	21,7	4,45	0,86	12,6	3,75	0,97	14,1	3,91	0,94
7	73,5	239	198	198′	151'	21,7	4,45	0,89	12,5	3,75	1,01	14,3	3,92	0,98
8	55,5	126,5	104	307'	254'	16,4	4,10	0,87	9,82	3,41	0,99	11,4	3,62	0,96
9	55,5	80,0	63,5	$\sim 500'$	421'	16,4	4,10	~0,85	10,0	3,43	~0,97	11,8	3,67	~0,93
10	47,0	105	88	305'	273'	13,8	3,88	0,84	8,38	3,17	0,98	9,8	3,41	0,93
11	43,4	133	114,5	$\sim 225'$	199'	12,8	3,78	~0,86	7,65	3,03	~1,02	8,86	3,25	~0,96
12	43,4	125	107	252'	213'	12,8	3,78	0,90	7,66	3,04	1,06	8,90	3,26	1,00
13	43,4	123	105,5	$\sim 244'$	217'	12,8	3,78	~0,86	7,67	3,04	~1,01	8,92	3,26	~0,96
14	43,4	123	105,5	252'	217'	12,8	3,78	0,88	7,67	3,04	1,04	8,92	3,26	0,99
15	43,4	117	100	255'	229'	12,8	3,78	0,85	7,70	3,05	1,00	8,95	3,27	0,95
16	43,4	98,8	83,5	320'	275'	12,8	3,78	0,89	7,75	3,05	1,04	9,06	3,29	0,99
17	43,4	97,5	82,5	315'	279'	12,8	3,78	0,86	7,76	3,06	1,01	9,08	3,29	0,96
18	43,4	97,0	82,0	$\sim 312'$	281'	12,8	3,78	~0,85	7,76	3,06	0,99	9,09	3,30	0,95
19	26,6	98,5	89,0	163'	193'	7,85	3,07	0,76	4,74	2,26	0,96	5,53	2,52	0,88
20	25,0	80,0	72,0	202'	238'	7,38	2,98	0,77	4,78	2,27	0,96	5,62	2,54	0,88

Величины $(\theta_{0,5})_{\mathfrak{s}}$ и $\eta = (\theta_{0,5})_{\mathfrak{s}}/\theta_{0,5})^{T}$ определены с точностью 2,5÷4% и 4÷6%, знаком \sim указана точность $\sim 5\%$ и $\sim 7\%$.

404

всего на форме функции $H_T(\theta)$. (Действительно, приведенные на рис. 3 примеры показывают, что наблюдаемое между $H_T(\theta)$ и $H_{\vartheta}(\theta)$ различие уменьшается с увеличением толщины мишени.) На рис. 3: 1 - t ==26,6 *мг/см*², $E_0 - 98,5 \kappa \vartheta \beta$; $2 - t = 55,5 \kappa r/cm^2$, $E_0 = 126 \kappa \vartheta \beta$, 3 - t ==105 $\kappa r/cm^2$, $E_0 = 293 \kappa \vartheta \beta$; пунктир — $\omega_{12}^{(i)}$ по формуле (7).

Аналогичным образом был рассмотрен также случай рассеяния в Al ионов водорода. В качестве собственной функции экранирования атома ¹₁H⁰ использовалось выражение [13]:

$$\omega_1^{(0)}(y) \simeq 0.75 \, e^{-1.47y} + 0.27 \, e^{-1.02y} - 0.02 \, e^{-0.34y}. \tag{17}$$

Функции взаимного экранирования, найденные исходя из выражений (17) и (9) с помощью формул (7) и (8), имели вид:

$$\omega_{12}^{(0)}(y) \simeq 0,1 \ e^{-15,9y} + 0,68 \ e^{-3,19y} + 0,26 \ e^{-1,47y} + 0,23 \ e^{-1,02y} - 0,27 \ e^{-0,8y};$$
(18a)
$$\omega_{\rm b}^{(0)} \simeq 0,1 \ e^{-16y} + 0,55 \ e^{-3,4y} + 0,262 \ e^{-1,67y} +$$

$$+0,095 e^{-1,3y}-0,007 e^{-0,87y}.$$
 (186)

Форма этих функций и соотношение между ними подобны соответствующим особенностям аналогичных функций для атомов ⁴He⁰ и

А1 (12) и (13); основное различие состоит в том, что последние несколько более круто спадают с расстоянием — так, функция (18а) становится <0 при $y \simeq 1.6$ и имеет минимум в области у~ ~ 2.5 (см. рис. 1).

Исходя из выражения (18а) для коэффициентов $A_{\alpha}^{(0)}$ и $B_{\alpha}^{(0)}$ (см. (14)) получены значения 13,3 и 42,2, а исходя из выражения (18б) — 12,1 и 38,2. Зависимость величины коэффициента 7,85/<В $_{\alpha}>$ от энергии была рассчитана на основании данных о зарядовом составе водородного пучка [12]; оба ва-

рианта ее представлены на рис. 26^1 . Как видно, в диапазоне энергий $E_0 = 60 - 160 \ \kappa 3\beta$, экспериментально исследованном в работе [3], величина 7,85/ $< B_{\alpha} >$ не намного отличается от значения 7,85/26,5, соответствующего неэкранированным ядрам. Поэтому найденные с учетом перезарядки распределения $H_T(\Theta)$ мало отличаются от рассчитанных по обычной теории Мольера. Различие в полуширинах составляет 1—3% (см. рис. 2, β) и находится в пределах ошибок измерений, что согласуется с выводами, сделанными в работе [3].

Подводя итоги, можно сказать следующее. Для учета влияния перезарядки ионов при описании их многократного рассеяния методом Мольера предложена схема, в которой отсутствуют «свободные параметры» и согласно которой зависимость формы углового распределения рассеянных частиц от их энергии сохраняется вплоть до нулевых энергий. Результаты расчетов, выполненных по этой схеме для случаев рассеяния ионов ⁴H и ⁴He в A1 при энергиях менее 300 *кэв* достаточно хорошо согласуются с экспериментальными данными. При этом полу-

чают объяснение сделанные на основании этих данных выводы о том, что для ионов 4Не влияние перезарядки на результат рассеяния практически не зависит от энергии в интервале 50-300 кэв [14] и что для ионов ¹Н при энергиях выше 40-50 кэв это влияние весьма мало [3].

Авторы приносят благодарность Х. И. Андриановой и Ю. Н. Шустикову за помощь в выполнении некоторых расчетов.

ЛИТЕРАТУРА

- 1. Бедняков А. А., Николаев В. С., Рудченко А. В., Тулинов А. Ф. ЖЭТФ, 50, 589, 1966.
- 2. Монеге G. Z. Naturforsch, 3a, 78, 1948; Ветhе Н. А. Phys. Rev., 89, 1256, 1953.
 3. Бедняков А. А., Дворецкий В. Н., Савенко И. А., Тулинов А. Ф. ЖЭТФ, 46, 1901, 1964; «Вестн. Моск. ун-та», физ., астрон., № 1. 55, 1965.
 4. Moliere G. Z. Naturforsch, 2a, 133, 1947.

- Bichsel H. Phys. Rev., 112, 182, 1958.
 Ashmore A., Crewe A. V. Proc. Phys. Soc. (London), A66, 1172, 1953.
- 7. Fleischmann H. Z. Naturforsch, 15a, 1096, 1960; Lassen N. Ohrt A. Mat. fys. medd., 36, No. 9, 1967. 8. Simon W. G. Phys. Rev., **B136**, 140, 1964.
- 9. Armstrong J. C., Mullendore J. B., Harris W. R., Marion J. B. Proc. Phys. Soc., 86, 1283, 1965.
- 10. Бор Н. Прохождение атомных частиц через вещество. М., 1950.

- Ворн. Прохождение атомных частиц через вещество. М., 1950.
 Мотт Н., Месси Г. Теория атомных столкновений. М., 1951, стр. 224.
 Allison S. K. Revs. Mod. Phys., **30**, 1137, 1958.
 Бедняков А. А., Бояркина А. Н., Савенко И. А., Тулинов А. Ф., ЖЭТФ, 1962, 42, 740.
 Бедняков А. А., Игнатов В. Г., Тулинов А. Ф., Шустиков Ю. Н.
- «Вестн. Моск. ун-та», физ., астрон., 11, 402, 1971.

Поступила в редакцию 19.10. 1971 г.

НИИЯФ