гой, — связана с наличием двух разлизных собственных времен: материальной частицы и физически бесконечно малой частицы.

Выражаю благодарность профессору А. А. Власову за предоставление темы и обсуждение результатов.

## ЛИТЕРАТУРА

Власов А. А. Статистические функции распределения. М., 1966.
 Кузьменков Л. С. «Вестн. Моск. ун-та», физ., астрон., 13, № 5, 614, 1972.
 Денен Г. Эйнштейновский сборник. М., 1969—1970, стр. 140.

Поступила в редакцию 25.5 1972 г.

Кафедра теоретической физики

УДК 621.378.325

## А. Я. ТЕРЛЕЦКИЙ

## ВЛИЯНИЕ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ НА ИЗЛУЧЕНИЕ ИОННОГО ЛАЗЕРА НА КРИПТОНЕ

Внешнее продольное магнитное поле значительно увеличивает мощность ионных ОКГ. Однако оно вносит ряд особенностей в излучение. Так, если ОКГ имеет окна Брюстера, то на них за счет эффектов Зеемана и Фарадея появляются дополнительные магнитооптические потери, которые увеличиваются с увеличением напряженности магнитного поля.

В настоящей работе исследовалась зависимость магнитооптических потерь

излучения ионного лазера на Кг с добавкой Ne в пропорции 4 к 1 ( $\lambda$ =6471 Å) от напряженности магнитного поля. Использовалась кварцевая разрядная трубка с окнами Брюстера и с параметрами:  $\emptyset = 5 \,$  мм,  $l_a = 1 \,$  м,  $c/2L = 75 \,$  Мац [1]. Трубка находилась внутри двухсекционного магнита, секции которого включались однонаправленно по полю или навстречу друг другу. При полях, включенных навстречу, влияние одного магнита на излучение компенсировалось влиянием другого с противоположной полярностью и излучение на выходе оставалось плоскополяризованным [2]. В случае встречных полей мощность излучения ОКГ была больше, чем в случае однонаправленного поля, т. е. в последнем имелись магнитооптические потери, которые, как видно из графиков на рис. 1 и 2, зависят от величины матнитного поля. Для того чтобы выяснить, как магнитооптические потери зависят от магнитного поля, воспользуемся методом стационарных амплитуд [2].

Пусть волна с компонентами  $E_x$  и  $\dot{E}_y$ , отразившись от зеркала, пройдет через окно Брюстера и станет волной с компонентами  $E'_x$  и  $E'_y$ , где

$$E'_{x} = \alpha E_{x}, \quad E'_{y} = E_{y}, \tag{1}$$

 $\alpha$ — коэффициент пропускания окна Брюстера для компонента  $E_x$  (для кварца по формулам Френеля  $\alpha$ =0,846). Проходя через активную среду, волна примет следующий вид:

$$E_{x}^{''} = \beta_{\pi} \frac{E_{x}^{'} + jE_{y}^{'}}{2} + \beta_{\pi} \frac{E_{x}^{'} - jE_{y}^{'}}{2} = \frac{\beta_{\pi} + \beta_{\pi}}{2} E_{x}^{'} + j\frac{\beta_{\pi} - \beta_{\pi}}{2} E_{y}^{'},$$

$$E_{y}^{'} = -\beta_{\pi}j \frac{E_{x}^{'} + jE_{y}^{'}}{2} + \beta_{\pi}j \frac{E_{x}^{'} - jE_{y}^{'}}{2} = -j\frac{\beta_{\pi} - \beta_{\pi}}{2} E_{x}^{'} + \frac{\beta_{\pi} + \beta_{\pi}}{2} E_{y}^{'},$$
(2)

где  $\beta = re^{-i(k+ix)z}$  для левой ( $\beta_{\pi}$ ) и правой ( $\beta_{\pi}$ ) круговых поляризаций,  $r = R\gamma$  (R -общий коэффициент отражения зеркал,  $\gamma -$ потери внутри резонатора), k и  $\varkappa -$ волновое число и показатель усиления, z -расстояние между зеркалами (для простоты положим, что длина активной среды и расстояние между окнами Брюстера тоже равны z). Пройдя второе окно Брюстера, волна будет иметь компоненты  $E'_{\chi}$  и  $E''_{\mu}$ , где

$$E_{x}^{'''} = \alpha E_{x}^{''}, \quad E_{y}^{'''} = E_{y}^{''}.$$
 (3)

Если лазер работает в стабильном режиме, то  $E_x''' = E_x$  и  $E_y''' = E_y$ , откуда, используя (1), (2) и (3), получаем следующую систему уравнений:

$$\alpha^{2} \frac{\beta_{\pi} + \beta_{\Pi}}{2} E_{x} + \alpha j \frac{\beta_{\pi} - \beta_{\Pi}}{2} E_{y} - E_{x} = 0,$$
  
$$-j\alpha \frac{\beta_{\pi} - \beta_{\Pi}}{2} E_{x} + \frac{\beta_{\pi} + \beta_{\Pi}}{2} E_{y} - E_{y} = 0.$$
 (4)



Рис. 1. Зависимость выходной мощности излучения от величины магнитного поля при разрядном токе 30 а и различных давлениях. ● — поля однонаправленные, + — встречные поля: 1 — p=0,36, 2 — p=0,43, 3 — p=0,54 мм рт. ст.



Рис. 2. Зависимость относительных магнитооптических потерь от величины магнитного поля. Кривая 1 — экспериментальная кривая изменения относительных потерь

$$\left(\frac{\Delta W}{W} = \frac{2(W_+ - W_0)}{W_+ + W_0}\right),$$

где  $W_0$  и  $W_+$  — мощность излучения при однонаправленных и встречных полях) давление 0,357 *мм рт. ст.,* ток 30 *а.* Кривая 2 — теоретическая кривая при  $\varkappa = 0,001 \ cm^{-1}$ 

Условие разрешимости этих уравнений имеет вид

$$\operatorname{Det} \begin{vmatrix} \alpha^{2} & \frac{\beta_{\pi} + \beta_{\pi}}{2} - 1 & \alpha j & \frac{\beta_{\pi} - \beta_{\pi}}{2} \\ -j\alpha & \frac{\beta_{\pi} - \beta_{\pi}}{2} & \frac{\beta_{\pi} + \beta_{\pi}}{2} - 1 \end{vmatrix} = 0,$$

$$\alpha^{2} & \frac{\beta_{\pi} + \beta_{\pi}}{2} - 1 \left( \frac{\beta_{\pi} + \beta_{\pi}}{2} - 1 \right) - \alpha^{2} & \frac{(\beta_{\pi} - \beta_{\pi})^{2}}{4} = 0.$$
(5)

т. е.

При наложении магнитного поля для левокруговой поляризации

$$k_{\pi}(\omega) = k(\omega - \omega_0 - \Omega), \qquad \varkappa_{\pi}(\omega) = \varkappa(\omega - \omega_0 - \Omega)$$

и для правокруговой поляризации

$$k_{\Pi}(\omega) = k (\omega - \omega_0 + \Omega), \qquad \varkappa_{\Pi}(\omega) = \varkappa (\omega - \omega_0 + \Omega),$$

где Ω — ларморова частота данного оптического перехода.

Рассмотрим случай, когда частота излучения совпадает с центром контура усиления ( $\omega = \omega_0$ ). Тогда, подставляя действительные значения  $\beta_{\pi}$  и  $\beta_{\pi}$  и замечая, что в силу симметрии функции  $\varkappa$ ,  $\varkappa_{\pi} = \varkappa_{\pi}$ , приведем уравнение (5) к виду:

$$\left(\alpha^{2}re^{\varkappa z} \frac{\cos k_{\pi}z + \cos k_{\pi}z}{2} - 1\right) \times \times \left(re^{\varkappa z} \frac{\cos k_{\pi}z + \cos k_{\pi}z}{2} - 1\right) - \alpha^{2}r^{2}e^{2\varkappa z} \frac{(\cos k_{\pi}z - \cos k_{\pi}z)^{2}}{4} = 0.$$
(6)

Откуда для коэффициента усиления  $K = r e^{\varkappa z}$  получаем

$$K = \frac{(1+\alpha^2)\left(\cos k_{\Pi}z + \cos k_{\Lambda}z\right)!}{4\alpha^2 \cos k_{\Pi}z \cos k_{\Lambda}z} \left[1 \pm \sqrt{1 - \frac{16\alpha^2 \cos k_{\Pi}z \cdot \cos k_{\Lambda}z}{(1+\alpha^2)^2 \left(\cos k_{\Pi}z + \cos k_{\Lambda}z\right)^2}}\right].$$
(7)

Поскольку  $k = \frac{w}{c}n$  (где n — коэффициент преломления, и  $n(\omega)$  линейно зависит от частоты в достаточных пределах, а также по условию настройки на  $\omega_0$ ,  $\frac{\omega_0}{c}nz = m\Pi$ , где m целое число), то

$$\cos k_{\Pi} z = \cos k_{\Lambda} z$$
.

Поэтому

 $K = \begin{cases} \frac{1}{\cos kz} \\ \frac{1}{\cos kz\alpha^2} \end{cases}$ 

для компонентов  $E_y$  и  $E_x$ , т. е. для центральной частоты с увеличением напряженности магнитного поля амплитуда изменяется пропорционально  $1/\cos[k(\Omega)z]$ , а потери интенсивности излучения росту пропорционально  $1/\cos^2(kz)$  (см. рис. 2). Поскольку центральная частота линейно поляризована, то любая другая ча-

Поскольку центральная частота линейно поляризована, то любая другая частота будет иметь большие потери за счет того, что при удалении от центра частотного контура усиления растет эллиптичность излучения и одновременно возрастают потери на окнах Брюстера. Поэтому полученная зависимость потерь излучения от величины магнитного поля справедлива при  $\Omega$  меньших доплеровской полуширины контура усиления, т. е. при не очень больших магнитных полях.

В заключение автор выражает благодарность А. Е. Новику за обсуждение полученных результатов и чл.-корр. Р. В. Хохлову за постоянное внимание к работе.

## ЛИТЕРАТУРА

1. Новик А. Е., Сасоров В. П. и др. «Журн. прикладной спектроскопии», № 5, 886, 1969.

2. Sinclair D. C. JOSA, 56, 12, 1727, 1966.

Поступила в редакцию 28.5 1972 г.

Кафедра волновых процессов

(8)