W_0 — мощность излучения одного электрона. График функции f(z) приведен на рисунке. Нетрудно видеть, что мощность когерентного излучения быстро падает с увеличением числа частиц, как только параметр z становится больше единицы.

Таким образом, интенсивность когерентного излучения N частиц, равномерно распределенных по окружности, в релятивистском ($\beta \sim 1$) случае всегда не больше мощности некогерентного излучения N-частиц, причем при $N \rightarrow \infty$ излучение исчезает вовсе.

ЛИТЕРАТУРА

- 1. Синхротронное излучение. Сб. статей под ред. А. А. Соколова и И. М. Тернова. М., 1966.
- 2. Соколов А. А., Гальцов Д. В., Колесникова М. М. «Изв. вузов», физика, 4, 14, 1971.

Поступила в редакцию 21.8 1972 г.

Кафедра квантовой статистики

УДК 551.465.78

В. Н. АНУЧИН, А. М. ГУСЕВ, Ю. Г. ПЫРКИН, М. М. ХАПАЕВ

ОБ ОДНОЙ ТЕОРЕТИЧЕСКОЙ МОДЕЛИ ПРИДОННЫХ ПЛОТНОСТНЫХ ПОТОКОВ НА СКЛОНАХ

Проблема теоретического и экспериментального исследования придонных плотностных потоков на материковых склонах является одной из важных задач физики моря. Этой проблеме посвящен ряд работ как у нас в стране, так и за рубежом. Наиболее полный обзор этих работ содержится в статье Б. А. Фидмана [1]. Большинство авторов исследуют движение придонных мутьевых или суспензионных потоков.

Анализ данных, приведенных в литературе, показывает, что вертикальное распределение скорости течения имеет всегда максимум, находящийся в мутьевом потоке, и стремится к нулю на некоторй высоте большей толщины мутьевого потока, плотность имеет ярко выраженную стратификацию; скорость движения зависит от разности плотностей мутьевого потока и чистой воды, а также от уклона дна. В отдельных работах дается соотношение между толщиной мутьевого потока и положением максимума -скорости, так, в [2] приводится соотношение

$$h_{\max} \simeq \frac{2}{3}h,$$

где h_{\max} — положение максимума скорости, а h — полная толщина мутьевого потока.

На кафедре физики моря и вод суши были получены в различных створах вдоль потока вертикальные распределения скорости течения, прозрачности воды и их зависимость от уклона дна.

Распределение скорости имело максимум, находящийся в мутьевом потоке на уровне от ²/₃h до ³/₄h (h — толщина мутьевого потока). Слой увлечения чистой воды также изменялся в зависимости от положения максимума скорости. В процессе эксперимента установлено, что при разности плотностей порядка 10⁻⁴ существует устойчивый мутьевой поток. Аналогичный результат получен в работе [3]. Числа Рейнольдса в этих экспериментах были порядка 10², т. е. режим движения был чисто ламинарным. Граница между мутьевым потоком и чистой водой почти не размывалась.

Подходя к описанию мутьевых потоков на склонах с общих гидродинамических позиций, необходимо учитывать их специфику, т. е. стратификацию плотности (и, по всей вероятности, вязкости), зависимость скорости течения от уклона, а также соотношение вертикальных и горизонтальных масштабов.

При небольших разностях плотностей порядка 10⁻³ мутьевого потока и чистой воды, записывая уравнения Навье — Стокса, мы можем считать плотность по вертикали постоянной, учитывая разность плотностей в выражении для массовой силы. При столь малых разностях в плотности вязкость обеих сред можно также считать равной и постоянной. Учитывая это и считая, что применительно к мутьевым потокам в уравнениях Навье — Стокса можно пренебречь теми же членами, которыми обычно пренебрегают в теории пограничного слоя [4] и теории струй [5], для плоской стационарной задачи получим следующее уравнение движения:

$$u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = f(x, z) + v \frac{\partial^2 u}{\partial z^2}.$$
 (1)

Добавляя к уравнению (1) уравнение неразрывности

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \tag{2}$$

и задавая аналитический вид функции f(x, z) и известной кинематической вязкости v, получаем замкнутую систему уравнений для u и w, где u — горизонтальная составляющая скорости течения, а w — вертикальная.

Для суспензионных потоков в силу f(x, z), являющейся избыточной составляющей силы тяжести, можно записать в виде

$$f(x, z) = \begin{cases} f(x, z) & 0 \le z \le h \\ 0 & h \le z, \end{cases}$$
(3)

где h — толщина мутьевого потока.

Считая плотность мутьевого потока постоянной как по вертикали, так и по горизонтали, можно записать следующее соотношение:

$$\frac{\partial}{\partial x} \left(\int_{0}^{h(x)} u \, dz \right) = 0.$$
(4)

Соотношение (4) выражает постоянство расхода через любое сечение. Граничные условия для системы (1)—(2) будут иметь вид

$$u|_{z=0} = 0,$$
 (5) $\frac{\partial u}{\partial z}|_{z=kh} = 0,$ (7)

$$w|_{z=0} = 0,$$
 (6) $u|_{x=0} = u_0(z).$ (8)

Коэффициент k, входящий в граничное условие (7), исследуется в этой работе.

В общем случае, как свидетельствуют натурные измерения [6], граница потока h слабо зависит от координаты x. Однако на расстоянии 20 миль между двумя измеренными профилями толщина h увеличилась на 1 m [6], т. е. $\Delta h/\Delta x$ имеет порядок $3 \cdot 10^{-5}$, следовательно, можно считать h = const. Из (4) следует, что $\partial u/\partial u = 0$, а из (2) и (6) $\omega = 0$, таким образом, мы получаем плоско-параллельное течение и система (1)—(2) выражается в уравнение

$$\nu \frac{d^2 u}{\partial z^2} + f(z) = 0 \tag{9}$$

со следующими граничными условиями:

$$u|_{z=0} = 0,$$
 (10)

$$\frac{du}{dz}\Big|_{z=kh} = 0.$$
(11)

Или, записывая (9) — (11) в безразмерном виде, получим

$$\frac{d^2 v}{d \eta^2} + F(\eta) = 0, \qquad (12)$$

$$\vartheta \mid_{n=0} = 0, \tag{13}$$

$$\frac{d\vartheta}{d\eta}\Big|_{\eta=k} = 0, \tag{14}$$

где $\eta = z/h$, $\vartheta = u/\vartheta_*$ (ϑ_* — характеристическая скорость). Аналитическое выражение для $F(\eta)$ ($\rho = \text{const}$) имеет вид

$$\Gamma(\eta) = \begin{cases} \frac{\Delta \rho_i}{\rho} & \frac{\text{Re}}{F_r} & 0 \leq \eta \leq 1, \\ 0 & 1 \leq \eta \end{cases}$$
(15)

8 ВМУ, № 5, физика, астрономия

617

где $\operatorname{Re} = \frac{\vartheta_* h}{v}$ — число Рейнольдса, $F_r = \frac{\vartheta_*^2}{gh}$ — число Фрута. Интегрируя (12) и считая область определения скорости $\vartheta \ge 0$, получаем

$$\vartheta = \begin{cases} -\frac{L}{2} \eta^2 + kL \eta \quad 0 \le \eta \le 1 \\ -L (1-k) \eta + \frac{L}{2} \quad 1 \le \eta \end{cases}, \tag{16}$$

$$L = \frac{\Delta \rho i}{\rho} \frac{Re!}{Fr}.$$

Таким образом, k находится в пределах от $\frac{1}{2}$ до 1 (т. е. $\frac{1}{2} < k < 1$), так как при $k = \frac{1}{2}$ наблюдается чисто пуазейловский профиль и не происходит увеличения чистой.

Рис. 1. Область определения решений для скорости 1 — k= =1/2; 2 — k=2/3; 3 — k=3/4; 4 — k=1. v_{*}=1 см/сек

Рис. 2. Вертикальное распределение скорости (х — экспериментальные данные), t — теоретический расчет при k=2/3, 2 — при k=3/4. $v_*=v_{\rm Max}$

воды (что трудно представить в нашем случае), а при k=1 происходит увеличение всей массы воды и максимум скорости находится на границе потока, что противоречит экспериментальным данным.

На рис. 1 показана область определения скорости течения и два профиля скорости при $k=^{2}/_{3}$ и $k=^{3}/_{4}$. Из анализа экспериментальных данных следует, что максимум скорости находится от $^{2}/_{3}h$ до $^{3}/_{4}h$; на рис. 2 показаны для сравнения экспериментальные данные (крестиками) и теоретический расчет для $k=^{2}/_{3}$ и $k=^{3}/_{4}$.

Безразмерный параметр L может меняться в зависимости от величин $\Delta \rho$, i, v_*, v h. Рассматривая зависимость вертикального распределения скорости от изменения i, приходим к выводу, что скорость увеличивается по абсолютной величине при увеличении i и уменьшается при уменьшении этого параметра.

Следовательно, при наличии максимума скорости у плотного течения слой увеличения чистой воды ограничен и может быть получен из довольно простых соотношений.

В заключение отметим, что теоретические результаты настоящей работы достаточно близки к экспериментальным данным.

ЛИТЕРАТУРА

- Фидман Б. А. Потоки с неоднородной плотностью. В трудах ГГИ, вып. 162. М., 1969.
- 2. Леви И. И., Кулеш Н. П. Изучение донных потоков, образующихся в водохранилищах при неравномерном и неустановившемся режимах движения. В трудах. ЛПИ, № 10, 1960.
- 3. Stetson H. C., Smith J. E. Amer. J. Sci., 35, 1938.

4. Шлихтинг Г. Теория пограничного слоя. М., 1969. 5. Бай-Ши-и. Теория струй. М., 1960. 6. Хунджуа Г. Г., Пивоваров А. А., Писарев В. Д., Пыркин Ю. Г. Экспериментальные исследования циркуляции вод в придонном слое моря. Тезисы доклада на 2-м Международном океанографическом конгрессе. М., 1966.

Поступила в редакцию 9.9 1972 г.

Кафедра физики моря и вод суши

УДК 539.172.2

619

Б. К. КЕРИМОВ, Т. Р. АРУРИ, М. Я. САФИН

УПРУГОЕ РАССЕЯНИЕ ЭЛЕКТРОНОВ НА ЯДРАХ С УЧЕТОМ АНОМАЛЬНОГО МАГНИТНОГО МОМЕНТА ЭЛЕКТРОНА

В данной статье приводятся результаты расчета сечений упругого рассеяния неполяризованных и продольно-поляризованных быстрых электронов на ядрах, обладающих электромагнитными мультипольными моментами с учетом аномального магнитного момента (АММ) электрона. Полученная нами формула для сечения обобщает результат [1] на случай АММ-электрона и корреляции спиральностей между начальным и конечным электроном.

Фурье-разложение оператора потенциальной энергии взаимодействия электрона с АММ (Δμ=α/2πμ0) с электрическими и магнитными мультипольными моментами ядра со спином I имеет вид

$$V(\vec{r}) = -\frac{4\pi e}{L^3} \sum_{q,\lambda,\mu} \frac{4\pi i^{\lambda}}{(2\lambda+1)!!} q^{\lambda} \Big\{ (if(q^2) + \frac{1}{2k_0} g(q^2) \rho_2(\vec{\sigma} \vec{q})) Y_{\lambda\mu}(\vec{q^0}) \widehat{Q}_{\lambda\mu} + (1) \Big\} \Big\}$$

$$+\frac{1}{\lambda}\widehat{M}_{\lambda\mu}(\vec{i\alpha}(\vec{L}Y_{\lambda\mu}(\vec{q^0})f(q^2))+\frac{1}{2k_0}g(q^2)\rho_3\vec{\sigma}[\vec{q}(\vec{L}Y_{\lambda\mu}(\vec{q^0})])\right\}q^{-2}e^{-i\vec{q}\cdot\vec{r}}.$$

Здесь $k_0 = \frac{mc}{\hbar}$ — масса электрона, $\vec{L} = -i[\vec{q} \nabla_{\vec{q}}]$ — оператор углового момента. $Y_{\lambda\mu}(\vec{q^0})$ — нормированные сферические функции, $\vec{q} = \vec{k} - \vec{k'}$ — переданный ядру импульс, $q = |\vec{q}|, \vec{q^0} = \vec{q}/q, L^3$ — нормировочный объем, $\vec{\alpha} = \rho_1 \vec{\sigma}, \vec{\sigma}, \rho_2$ и ρ_3 — матрицы Дирака, $\widehat{Q}_{\lambda\mu}$ и $\widehat{M}_{\lambda\mu}$ — соответственно операторы электрического и магнитного мультипольных моментов порядка λ для ядра со спином I ($\lambda \leq 2I$) [2—4], которые выражаются через кулоновские ($\lambda = 0, 2, ...$) и магнитные ($\lambda = 1, 3, ...$) мультипольные форм-факторы ($F_{c\lambda}(q^2)$ и $F_{M\lambda}(q^2)$), а $f(q^2)$ и $g(q^2)$ — форм-факторы электрона, $f(0) = 1, g(0) = \alpha/2\pi$. $\alpha = 1/137.$

В формуле (1) члены, пропорциональные $g(q^2)$, описывают взаимодействие AMMэлектрона с электромагнитным полем ядра-мишени.

Дифференциальное сечение упругого рассеяния продольно поляризованных ультра-релятивистских электронов ($E_e \gg mc^2$), вычисленное в первом борновском приближении на основании (1), определяется выражением

$$\frac{d\sigma}{d\Omega}(s,s') = \frac{1}{2} \sigma_{\text{Mott}}(\theta) \left\{ Z^2 F_E^2(q^2) \left[(1+ss') f^2 + (1-ss') \left[\left(1+ \text{tg}^2 \frac{\theta}{2} \right) \left(\frac{\text{h}q}{2mc} \right)^2 g^2 - 2fg \,\text{tg}^2 \frac{\theta}{2} \right] \right] + \left(\frac{\text{h}q}{2M_{pc}} \right)^2 \left(\frac{I+1}{3I} \right) \varkappa_m^2 F_M^2(q^2) \times \left[(1+ss') \left[f^2 \left(f^2 + \frac{g^2}{4k^2} g^2 \right) \left(1+2\text{tg}^2 \frac{\theta}{2} \right) + 4fg \,\text{tg}^2 \frac{\theta}{2} \right] + (1-ss') \left(\frac{\text{h}q}{2mc} \right)^2 g^2 \right] \right\}, (2)$$