4. Шлихтинг Г. Теория пограничного слоя. М., 1969. 5. Бай-Ши-и. Теория струй. М., 1960. 6. Хунджуа Г. Г., Пивоваров А. А., Писарев В. Д., Пыркин Ю. Г. Экспериментальные исследования циркуляции вод в придонном слое моря. Тезисы доклада на 2-м Международном океанографическом конгрессе. М., 1966.

Поступила в редакцию 9.9 1972 г.

Кафедра физики моря и вод суши

УДК 539.172.2

619

Б. К. КЕРИМОВ, Т. Р. АРУРИ, М. Я. САФИН

УПРУГОЕ РАССЕЯНИЕ ЭЛЕКТРОНОВ НА ЯДРАХ С УЧЕТОМ АНОМАЛЬНОГО МАГНИТНОГО МОМЕНТА ЭЛЕКТРОНА

В данной статье приводятся результаты расчета сечений упругого рассеяния неполяризованных и продольно-поляризованных быстрых электронов на ядрах, обладающих электромагнитными мультипольными моментами с учетом аномального магнитного момента (АММ) электрона. Полученная нами формула для сечения обобщает результат [1] на случай АММ-электрона и корреляции спиральностей между начальным и конечным электроном.

Фурье-разложение оператора потенциальной энергии взаимодействия электрона с АММ (Δμ=α/2πμ0) с электрическими и магнитными мультипольными моментами ядра со спином I имеет вид

$$V(\vec{r}) = -\frac{4\pi e}{L^3} \sum_{q,\lambda,\mu} \frac{4\pi i^{\lambda}}{(2\lambda+1)!!} q^{\lambda} \Big\{ (if(q^2) + \frac{1}{2k_0} g(q^2) \rho_2(\vec{\sigma} \vec{q})) Y_{\lambda\mu}(\vec{q^0}) \widehat{Q}_{\lambda\mu} + (1) \Big\} \Big\}$$

$$+\frac{1}{\lambda}\widehat{M}_{\lambda\mu}(\vec{i\alpha}(\vec{L}Y_{\lambda\mu}(\vec{q^0})f(q^2))+\frac{1}{2k_0}g(q^2)\rho_3\vec{\sigma}[\vec{q}(\vec{L}Y_{\lambda\mu}(\vec{q^0})])\right\}q^{-2}e^{-i\vec{q}\cdot\vec{r}}.$$

Здесь $k_0 = \frac{mc}{\hbar}$ — масса электрона, $\vec{L} = -i[\vec{q} \nabla_{\vec{q}}]$ — оператор углового момента. $Y_{\lambda\mu}(\vec{q^0})$ — нормированные сферические функции, $\vec{q} = \vec{k} - \vec{k'}$ — переданный ядру импульс, $q = |\vec{q}|, \vec{q^0} = \vec{q}/q, L^3$ — нормировочный объем, $\vec{\alpha} = \rho_1 \vec{\sigma}, \vec{\sigma}, \rho_2$ и ρ_3 — матрицы Дирака, $\widehat{Q}_{\lambda\mu}$ и $\widehat{M}_{\lambda\mu}$ — соответственно операторы электрического и магнитного мультипольных моментов порядка λ для ядра со спином I ($\lambda \leq 2I$) [2—4], которые выражаются через кулоновские ($\lambda = 0, 2, ...$) и магнитные ($\lambda = 1, 3, ...$) мультипольные форм-факторы ($F_{c\lambda}(q^2)$ и $F_{M\lambda}(q^2)$), а $f(q^2)$ и $g(q^2)$ — форм-факторы электрона, $f(0) = 1, g(0) = \alpha/2\pi$. $\alpha = 1/137.$

В формуле (1) члены, пропорциональные $g(q^2)$, описывают взаимодействие AMMэлектрона с электромагнитным полем ядра-мишени.

Дифференциальное сечение упругого рассеяния продольно поляризованных ультра-релятивистских электронов ($E_e \gg mc^2$), вычисленное в первом борновском приближении на основании (1), определяется выражением

$$\frac{d\sigma}{d\Omega}(s,s') = \frac{1}{2} \sigma_{\text{Mott}}(\theta) \left\{ Z^2 F_E^2(q^2) \left[(1+ss') f^2 + (1-ss') \left[\left(1+ \text{tg}^2 \frac{\theta}{2} \right) \left(\frac{\text{h}q}{2mc} \right)^2 g^2 - 2fg \,\text{tg}^2 \frac{\theta}{2} \right] \right] + \left(\frac{\text{h}q}{2M_{pc}} \right)^2 \left(\frac{I+1}{3I} \right) \varkappa_m^2 F_M^2(q^2) \times \left[(1+ss') \left[f^2 \left(f^2 + \frac{g^2}{4k^2} g^2 \right) \left(1+2\text{tg}^2 \frac{\theta}{2} \right) + 4fg \,\text{tg}^2 \frac{\theta}{2} \right] + (1-ss') \left(\frac{\text{h}q}{2mc} \right)^2 g^2 \right] \right\}, (2)$$

где

$$\sigma_{\text{Mott}}(\theta) = \frac{\alpha^2}{4k^2} \frac{\cos^2 \frac{\theta}{2}}{\sin^4 \frac{\theta}{2}} \frac{1}{1 + (2E/Mc^2)\sin^2 \frac{\theta}{2}}; \quad q^2 = 4k^2 \sin^2 \frac{\theta}{2};$$

$$F_E^2(q^2) = F_c^2(q^2) + \frac{1}{180} \frac{(2I+3)(I+1)}{I(2I-1)} \left(\frac{Q_0}{Z}\right)^2 q^4 F_Q^2(q^2),$$

$$F_{M}^{2}(q^{2}) = F_{M1}^{2}(q^{2}) + \frac{2}{1575} \frac{(2I+3)(I+2)}{(I-1)(2I-1)} \left(\frac{\Omega_{0}}{\varkappa_{m}}\right)^{2} q^{4}F_{M3}^{2}(q^{2}),$$

здесь $\sigma_{Mott}(\theta)$ — моттовское сечение рассеяния электронов на точечном заряде, $Ze, Q = eQ_0, \mu_I = \varkappa_m \mu_R + \Omega = \Omega_0 \mu_R$ — заряд, электрический квадрупольный, магнитный дипольный и магнитный октупольный моменты (статические) ядра со спином I, $\mu_R = e\hbar/_{2M_pc}$ — ядерный магнетон, M_p — масса протона, \varkappa_m — число ядерных магнетонов, F_c, F_q, F_{M1} н F_{M3} — форм-факторы распределений соответственно заряда, электрического квадрупольного, магнитных дипольного и октупольного моментов основного состояния ядра ($F_i(0) = 1; i = C, Q, M1, M3$); F_E н F_M — зарядовый и магнитный форм-факторы ядра; $p = \hbar k$ и E = cp — импульс и энергия электрона; θ — угол рассеяи и после рассеяния соответственно.

Формула (2) определяет влияние одновременно АММ-электрона (члены ~g и g^2) и корреляции спиральностей (члены ~ss') на угловой и энергетический спектры рассеянных электронов. Положив в (2) ss'=1 и ss'=-1, мы получим выражения для сечения рассеяния без изменения и с изменением спиральности электрона соответственно. Из (2) видно, что электрическое и магнитное рассеяния с изменением спиральности электрона ($s'=-s=\pm1$) обусловлены взаимодействием АММ-электрона с электромагнитными мультипольными моментами ядра. Величина такого рассеяния определяется поведением форм-факторов g и f. Если же пренебречь влиянием АММ-электрона (g=0), то в упругом рассеянии не происходит изменения спиральности ультрарелятивистского электрона ($s=s'=\pm1$).

Усредняя выражение (2) по начальным и суммируя по конечным спиновым состояниям электрона, получаем сечение упругого рассеяния неполяризованных электронов на ядре (Ze, Q, μ_I , Ω) с учетом АММ-электрона:

$$\frac{d\sigma}{d\Omega} = \sigma_{\text{Mott}}(\theta) \left\{ Z^2 F_E^2(q^2) \left[f^2 + \left(1 + \lg^2 \frac{\theta}{2} \right) \left(\frac{\hbar q}{2mc} \right)^2 g^2 - 2fg \, \lg^2 \frac{\theta}{2} \right] + \left(\frac{\hbar q}{2M_p c} \right)^2 \left(\frac{I+1}{3I} \right) \varkappa_m^2 F_M^2(q^2) \left[\left(f^2 + \frac{q^2}{4k^2} g^2 \right) \left(1 + 2 \, \lg^2 \frac{\theta}{2} \right) + 4fg \, \lg^2 \frac{\theta}{2} + \left(\frac{\hbar q}{2mc} \right)^2 g^2 \right] \right\}.$$
(3)

Полагая в (3) f=1, g=0, приходим к известному сечению рассеяния [1, 4] неполяризованных точечных электронов без AMM на ядрах.

В случае рассеяния электронов назад ($\theta = 180^{\circ}$), когда существенны магнитные эффекты, из (2) получаем:

$$\frac{d\sigma}{d\Omega} (\theta = 180^{\circ}) = \left(\frac{e^2}{2M_p c^2}\right)^2 \frac{1}{1 + \frac{2E}{Mc^2}} \left(\frac{I+1}{3I}\right) \varkappa_m^2 F_{ss'}^2 (q_{\pi}^2), \tag{4}$$

где

$$F_{ss'}^{2}(q_{\pi}^{2}) = (1 + ss') (f + g)^{2} F_{M}^{2}(q_{\pi}^{2}) + (1 - ss') \left(g^{2} \left(\frac{\hbar q_{\pi}}{2mc}\right)^{2} - 2fg\right) \gamma_{m} F_{E}^{2}(q_{\pi}^{2}),$$

$$\gamma_{m} = \frac{1}{2} \left(\frac{M_{p}c^{2}}{E}\right)^{2} \left(\frac{Z}{\varkappa_{m}}\right)^{2} \left(\frac{3I}{I+1}\right), \ q_{\pi}^{2} = (q^{2})_{\theta = 180^{\circ}}.$$

Из последнего выражения видно, что рассеяние назад с переворачиванием спина электрона (ss'=-1) обусловлено взаимодействием АММ-электрона с кулоновским мультипольным моментом ядра (член $\sim \gamma_m F_E^2$).

θ°		30 °	60°	90°	120°	150°	180°
$\frac{d \sigma}{d \Omega} \cdot 10^{28}, \frac{c m^2}{cmepa\partial}$	$\begin{array}{c} f = 1, \\ g = 0 \end{array}$	3,34	2,09.10-2	3,59.10-4	2,40.10-6	2,69.10-8	9,21.10-10
	$\frac{\omega}{m}=0,1$	2,70	1,65.10-2	2,80.10-4	1,85.10-6	2,07.10-8	7,1.10-10
	$\frac{\omega}{m}=0,01$	2,54	1,53.10-2	2,55.10-4	1,68.10-6	1,88.10-8	6,45.10-10

Приводим численную оценку влияния зарядового форм-фактора электрона $f(q^2)$ на сечение рассеяния.

Электродинамический расчет формфакторов f и g приводит к более быстрому убыванию g с ростом q^2 по сравнению с f. Согласно этим расчетам ($\hbar = c = 1$)

$$f = 1 - \frac{\alpha}{\pi} \left[\ln \frac{m}{2\omega} + \ln \frac{E}{m} \right] \ln \frac{q^2}{m^2}, \tag{5}$$

где ш — максимальная энергия мягких фотонов, испускаемых электроном в процессе где св — максимальная энергия магких фотолов, испускамых электроном в присесе рассеяния ($\omega \ll m$). Результаты вычисления угловой зависимости сечения рассеяния неполяризованных электронов на ядре Al^{27} при E=200 Мэв для f=1, а также для значения f из (5) при $\omega/m=0,01$ и 0,1, представлены в таблице. При этом использованы форм-факторы F_c , F_Q , F_{M1} и F_{M3} , полученные в [7] из упругого рассея-ния электронов с энергией E=80-200 Мэв.

Сечения, получаемые из (3) при f = 1 и g = 0, оказываются завышенными по сравнению с экспериментальными данными [7]. Из приведенной таблицы видно, что это завышение может быть устранено путем введения форм-факторов электрона.

ЛИТЕРАТУРА

- 1. Pratt R. H., Walecka J. D., Griffy T. A. Nucl. Phys., **64**, 677, 1965. 2. Willey R. Nucl. Phys., **40**, **529**, 1963. 3. Керимов Б. К., Эль Гавхари А. «Изв. АН СССР», сер. физич., **32**, 2064, 1968. 4. Rand R. E., Frosch R., Yearian M. R. Phys. Rev., 144, 859, 1966.
- 5. Соколов А. А., Керимов Б. К. Ann. der Phys., 7, 46, 1958; Соколов А. А. Введение в квантовую электродинамику. М., 1958.
- 6. Лифшиц Е. М., Путаевский Л. П. Релятивистская квантовая теория поля, ч. 2. М., 1971.
- 7. Stovall T., Vinciguerra D., Bernhiem M. Nucl. Phys., A 91, 513, 1967.

Поступила в редакцию 7.8 1972 г.

Кафедра теоретической физики

УДК 54.33

М. В. НАЗАРОВ, Н. Н. СЕДОВ, В. Г. ДЮКОВ

КРИОГЕННЫЙ ЭЛЕКТРОННЫЙ ЭМИССИОННЫЙ МИКРОСКОП

Электронная микроскопия позволяет исследовать объекты и физические процессы, протекающие в них, в широком интервале температур. Для просвечивающего и растворового микроскопов созданы приставки, дающие возможность изучать объекты как при температурах выше комнатной, так и при низких температурах. Для широкого класса объектов, которые удобно изучать методами количественной эмиссионной микроскопии