Вестник московского университета

№ 6-1973

УДК 523.72.001.5:546.212

= can

А. А. ПИВОВАРОВ, Е. П. АНИСИМОВА

О СПЕКТРАЛЬНЫХ ПОТОКАХ ПРОНИКАЮЩЕЙ В МОРЕ СОЛНЕЧНОЙ РАДИАЦИИ

Представлены результаты экспериментального определения величин суммарного и спектральных потоков солнечной радиации, проникающих на различные глубины моря. Определены величины относительных спектральных потоков на различных глубинах в море и значения коэффициентов объемного ослабления суммарного потока и соответствующих участков спектра солнечной радиации. Приводятся данные об изменении с глубиной спектрального состава проникающей под поверхность моря солнечной радиации.

Проникающий на различные глубины поток лучистой энергии является одним из основных факторов, определяющих термический режим морей и океанов. Ослабление этого потока с глубиной, обусловленное процессами поглощения и рассеяния в воде, имеет резко выраженный избирательный характер. Для количественного описания селективности ослабления А. Г. Колесниковым [1] было предложено выражение вида

$$I_{z}(\tau) = I_{0}(\tau) \sum_{m=1}^{\nu} \frac{I_{\Delta\lambda}(\tau)}{I_{0}(\tau)} e^{-\beta_{m}z}, \qquad (1)$$

где $I_0(\tau)$ и $I_{\Delta\lambda}(\tau)$ — поток суммарной солнечной радиации и спектральный поток для *m*-го участка спектра проникающей под поверхность моря солнечной радиации, β_m — коэффициент объемного ослабления для *m*-го участка спектра, τ — время.

Величину $I_{\Delta\lambda}(\tau)/I_0(\tau) = I_m$ будем называть относительным спектральным потоком под поверхностью моря для *m*-го участка спектра. Величина $I_m e^{-\beta_m z} = Jmz$ характеризует спектральный поток на глубине *z*.

Величины I_m и β_m в выражении (1) по данным наблюдений очень немногочисленны и получены главным образом на основе анализа измерений общего суммарного потока солнечной радиации на различных глубинах. Исходя из этих измерений [2, 3] можно полагать, что реальное ослабление потока солнечной радиации с глубиной достаточно хорошо аппроксимируется двумя-тремя слагаемыми выражения (1).

Получаемые при такой аппроксимации значения относительных потоков I_m под поверхностью моря и коэффициентов ослабления β_m для соответствующих участков спектра существенно зависят от прозрачности воды и сравнительно мало меняются с изменением высоты солнца при одной и той же прозрачности вод. Последнее является косвенным свидетельством того, что относительный спектральный состав проникающей в море солнечной радиации на каждой фиксированной глубине мало меняется с изменением высоты солнца, а ослабление ее с глубиной для сравнительно широкой области спектра можно достаточно надежно описать простым экспоненциальным законом.

Представляет интерес непосредственная экспериментальная проверка этих положений и определение границ разбиения полного спектра проникающей в море солнечной радиации на отдельные участки, для которых относительные спектральные потоки и соответствующие им коэффициенты объемного ослабления можно считать практически постоянными.

Во время экспедиционных работ на Черном море с судна «Московский университет» проводились измерения общего потока суммарной солнечной радиации и его спектральных составляющих на различных глубинах моря. Результаты анализа этих измерений и приводятся в настоящей работе.

Для измерений использовался приемник термоэлектрического пиранометра в сочетании с различными фильтрами для выделения отдельных участков спектра солнечной радиации. Приемник и устройство для смены фильтров в виде легкого диска смонтированы в герметичном корпусе. Несложная электрическая схема позволяет вести дистанционное управление сменой фильтров и осуществлять контроль за правильностью их установки. В качестве измерительного прибора использовался гальванометр M-101, соединенный кабельной связью с приемником пиранометра. Более подробное описание использованной аппаратуры дано в работе [4].

В процессе измерений применялись два фильтра: красный и желтый. Характеристики их и защитного органического стекла приведены в работе [5].

Пропускание органическим стеклом достаточно равномерно для диапазона длин волн от 0,3 до 1,7 *мкм*. Оба фильтра имеют широкие области и большой коэффициент пропускания (около 90%), ограниченные со стороны коротких волн длинами 0,62 *мкм* (красный) и 0,53 *мкм* (желтый), а со стороны длинных волн областью пропускания органического стекла. В результате непосредственных измерений с фильтрами и расчетом при их различной комбинации были получены спектральные потоки для трех участков общего спектра, а именно:

$\lambda > 0,62$ мкм, $\lambda < 0,53$ мкм, 0,53 мкм $< \lambda < 0,62$ мкм.

Градуировка подводного пиранометра проводилась в воздухе при различных высотах солнца путем сравнения его показаний без фильтра с показаниями стандартного термоэлектрического пиранометра при одновременном измерении потока падающей суммарной солнечной радиации. Наличие сравнительной градуировки позволило в дальнейшем контролировать показания подводного пиранометра в воздухе при измерении потоков суммарной радиации данными непрерывной регистрации этих потоков пиранометром. Измерения подводным пиранометром проводились в воздухе и в воде на суточных станциях с кормовой части судна на расстоянии ~3 *м* от борта.

В поверхностном слое моря суммарный и спектральные потоки измерялись через каждые 10 *см* до глубины 60 *см*, далее через 20 *см* до глубины 1,5 *м* на горизонтах 2, 3, 5, 8 и 10 *м*. Отсчеты показаний гальванометра на каждой глубине снимались при опускании и при подъеме. При волнении брали среднее из нескольких отсчетов. Приведение радиации, проникающей под поверхность моря к моменту измерения потока на какой-либо глубине, осуществлялось графически по измерениям суточного хода падающей суммарной радиациии и ее спектральных потоков. При этом альбедо учитывалось по записям отраженной суммарной радиации. Альбедо для спектральных потоков принималось таким же, как и для общего потока.

Для анализа соотношения общего суммарного потока и спектральных потоков в их суточном ходе как в воздухе, так и на различных

					λ=	>0,0	52)	1				
Imz,%		8	14 ±	12 1	8	13 1	7	7 1	11 1	9 1	9 1	воздух
2-		Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	ŧ	ł	ł	Ŧ	0,б м
	1		Ŧ	ł	Ŧ	¥	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	3,0м
						λ.	< 0	53	μ			
		ł	Ŧ	Ŧ	ł	ł	•	•	Ŧ	ž	•	10 M
0-		ł	ł	ł	ŧ	Ŧ	Ŧ	ŧ	Ŧ	ł	ł	<i>1,5 м</i>
	1	Ŧ	Ŧ	Ŧ	Ŧ	ł	1 4	•		Ŧ		OM
	10	2	20		30	4	0	ć	50	l	50	70 h _e

Рис. 1. Зависимость относительных спектральных потоков на фиксированных глубинах от высоты солнца. Цифрами указано число использованных при осреднении данных измерений

Рис. 2. Изменение по глубине относительных спектральных потоков в процентах от суммарного на данной глубине

глубинах в море были отобраны только серии наблюдений при безоблачном небе (всего 98 серий).

Для количественной оценки относительных спектральных потоков и их зависимости от высоты солнца были рассчитаны по всем данным измерений величины I_{mz} на различных глубинах. Результаты этих расчетов частично представлены на рис. 1. Качественный характер зависимости I_{mz} от высоты солнца на других фиксированных глубинах в море остается таким же и поэтому на рисунке не приводится. Следует отметить отсутствие четкой зависимости и приближенное постоянство спектрального состава суммарной солнечной радиации в течение суток при высотах солнца больше 20° как в воздухе, так и на каждой фиксированной глубине в море. Среднеквадратичные ошибки значений I_{mz} не превышают 5%. В воздухе этот разброс меньше вследствие меньших ошибок измерений, в воде он также уменьшается с увеличением глубины.

Изменение с глубиной осредненных по всем данным измерений (при высотах солнца >20°) относительных спектральных потоков в процентах от суммарного потока на той же глубине приведено на рис. 2. Этот рисунок наглядно иллюстрирует селективность ослабления суммарного потока проникающей в море солнечной радиации. Относительный спектральный поток для красной и инфракрасной области спектра $(\lambda > 0,62 \ mkm)$ на глубине 1,5 м уменьшается почти в три раза по сравнению с его величиной, проникающей под поверхность моря (кривая 1). В то же время вклад относительных спектральных потоков сине-зеленой области спектра ($\lambda < 0,53 \ mkm$) не только не уменьшается, но и возрастает с увеличением глубины (кривая 3). На глубинах больше 3 м практически весь суммарный поток солнечной радиации сосредоточен

Рис. 3. Изменение спектральных потоков по глубине по осредненным данным. 1 - 0.62 мкм, 2 - 0.53 мкм $<\lambda < 0.62$ мкм, $3 - \lambda < 0.53$ мкм

в области спектра λ<0.62 мкм.

Относительная доля узкой желто-зеленой области спектра $(0,53 \text{ MKM} < \lambda < 0,62 \text{ MKM})$ в общем потоке сначала возрастает с глубиной, а затем (примерно с 1,5 м) уменьшается (кривая 2). Такое изменение можно объяснить, по-видимому, тем, что в слое 0-1.5 м поглощение этой области спектра сравнительно невелико и преобладает рассеяние красной области спектра с трансформацией ее в желто-зеленую. На глубинах больше 1,5 м уровень красной радиации сильно падает и начинается монотонное убывание в общем потоке относительной доли желто-зеленой области. Что касается относитель-

ной доли области спектра $\lambda < 0.53$ *мкм*, то она возрастает, и на глубинах около 5 *м* составляет 60% общего суммарного потока.

Ослабление отдельных спектральных и общего суммарного потоков с глубиной в полулогарифмическом масштабе представлено на рис. З. Из рисунка видно, что для узкой области (0,53 *мкм* $<\lambda < 0,62$ *мкм*) практически по всей глубине (за исключением слоя 0—20 см) выполняется простой экспоненциальный закон (кривая 2). Начиная с глубины 0,6 *м* такой же закон (кривая 1), но с другим коэффициентом ослабления выполняется и для красной области ($\lambda > 0,62$ *мкм*). Этого нельзя сказать для области обнаруживает два излома: один вблизи поверхности на глубине около 0,2 *м*, а второй — на глубине около 3 *м*. Аналогичный характер имеет и кривая ослабления суммарного потока с глубиной (кривая 4).

На рис. З также видно, что коэффициент ослабления (тангенс угла наклона кривых) для суммарного потока меняется с глубиной. На глубинах больше З м он ближе всего к коэффициенту ослабления желтозеленой области 0,53 мкм $<\lambda<0,62$ мкм, а в слое 0,6—3 м ближе к коэффициенту ослабления для участка спектра 0,30 мкм $<\lambda<0,53$ мкм.

Наиболее сложный характер изменения коэффициент ослабления имеет в тонком приповерхностном слое моря, где его определение сопряжено с большими трудностями, вследствие влияния волнения и точности определения глубины расположения приемника на результаты измерений.

Послойные значения коэффициентов ослабления суммарного и спектральных потоков приведены в табл. 1.

Из этой таблицы видно, что изменение по глубине коэффициентов ослабления для суммарного потока значительно больше, чем для спектральных потоков.

Таблица І

	Значения в м ⁻¹								
Слой воды, м	Суммарный поток	λ<0,62 мкм	0,53 мкм <	λ< 0,53 mrm					
0-0,6 0,6-3 3-10	2,3 0,21 0,09	3,6 0,60 0,60	0,17 0,17 0,17	0,20 0,05					

Графическая обработка данных измерений суммарного потока по методу, предложенному в работе [3], показала, что в первом приближении ослабление его с глубиной для высот солнца больше 20° можно аппроксимировать тремя слагаемыми выражения (1), а именно:

$$I(z, \tau) = I_0(\tau) [0.53 e^{-4.9z} + 0.23 e^{-0.9z} + 0.24 e^{-0.10z}].$$
(2)

Численное значение входящего в воду относительного спектрального потока в первом слагаемом (2) близко по величине соответствующему значению Jm для области спектра с длиной волн $\lambda > 0,62$ мкм (см. рис. 2).

Сопоставление суммарного потока, вычисленного по формуле (2), с осредненными данными фактических измерений его на различных глубинах приведено в табл. 2. Из таблицы видно хорошее соответствие принятой аппроксимации с данными измерений.

Таблица 2

Z, M	. <u>I (z, т)</u> , по форму- ле (2)	$\frac{I(z, \tau)}{I_0(\tau)}$, по данным наблюде- ниям	Средне-квад- ратичная ошибка
0,3	0,52	0,50	0,020
0,6	0,39	0,38	0,010
1,5	0,27	0,28	0,010
3,0	0,21	0,21	0,010
5,0	0,16	0,16	0,010
8,0	0,12	0,12	0,006
10,0	0,09	0,09	0,005
15,0	0,05	0,05	0,003

Рассмотрение зависимости коэффициентов ослабления по данным наблюдений суммарного потока приводит к следующим выводам. При высотах солнца больше 20° величины β_m не обнаруживают какого-либо систематического изменения. Разброс в значениях β_m больше для первого и второго слагаемых в выражении (2).

Сопоставление численных значений коэффициентов ослабления табл. 1 и выражения (2) показывает, что верхний приповерхностный полуметровый слой воды практически полностью поглощает инфракрасную и сильно ослабляет красную область спектра. Коэффициент ослабления суммарного потока в этом слое определяется в основном ослаблением радиации с длиной волны больше 0,62 *мкм*. В слое до глубины 1,5 *м* происходит дальнейшее ослабление красной и желто-зеленой области спектра проникающей радиации, а для глубин больше 1,5 *м* коэффициент ослабления определяется ослаблением синей радиации.

ЛИТЕРАТУРА

 Колесников А. Г. «Изв. АН СССР», сер. геофиз., № 2, 1954.
Богуславский С. Г. Поглощение солнечной радиации в море и его непосредственное влияние на изменение температуры моря. В трудах МГИ АН СССР, т. 8. 1956.

3. Пивоваров А. А., Лаворко В. С. «Вестн. Моск. ун-та», физ., астрон., № 6, 1960. 4. Пивоваров А. А., Анисимова Е. П., Фролов В. И. «Океанология», 7, вып. 2, 1967.

5. Анисимова Е. П. «Вестн. Моск. ун-та», физ., астрон., № 6, 1965.

Поступила в редакцию 16.2 1972 г.

Кафедра физики моря и вод суши