Л. С. ШТЕМЕНКО

РАСПРЕДЕЛЕНИЕ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ В ПОТОКЕ ВОЗДУХА ЗА УДАРНОЙ ВОЛНОЙ

Ударные трубы широко используются для изучения обтекания тел и физикохимических превращений молекул газа. Точные данные об этих процессах можно получить, если известно распределение параметров газа за ударной волной. Поэтому исследование распределения этих параметров необходимо. В приближенной теории ударной трубы параметры потока газа за ударной волной считают постоянными. Однако в действительности постоянство параметров нарушается. Неоднородность потока связана, во-первых, с конечным временем раскрытия диафрагмы и существованием вследствие этого зоны формирования ударной волны. Во-вторых, — с развитием пограничного слоя за ударной волны и существованием зоны затухания ударной волны.

раничного слоя за ударной волной и существования зоны затухания ударной волны. В работах [1, 2], учитывающих конечное время раскрытия диафрагмы, течение считают одномерным. Между тем процесс формирования ударной волны существенно неодномерен. В работах [3—6] экспериментально получено распределение кинематических параметров газа за ударной волной только в зоне ее затухания. В настоящей работе изучается распределение кинематических параметров воздуха за сформировавшейся ударной волной и в зоне ее формирования. Получено распределение скорости и потока и скорости звука по пробке воздуха за ударной волной при числах M ударной волны, равных 1,8—3. Опыты проводились в однодиафрагменной ударной трубе, описанной в работе [7].

Рис. 1. Временная развертка течения воздуха за ударной волной на расстоянии l/D=12 калибров от диафрагмы: a — фотография течения, б — схема течения

Я

Были получены последовательные кадры и временные развертки течения воздуха в ударной трубе на разных расстояниях $l \, mm$ от диафрагмы $D \leqslant l \leqslant 22 \, D \, (D=46 \, mm -$ гидравлический диаметр трубы). По ним изучалось движение ударной волны и контактной поверхности вдоль ударной трубы.

тактной поверхности вдоль ударной трубы. Анализ этих снимков показывает, что по всей длине зоны формирования ударной волны ее догоняют волны сжатия конечной амплитуды, взаимодействуют с ударной волной, ускоряя ее. При взаимодействии образуются контактные разрывы. Они хорошо видны в пробке разгоняемого воздуха как в зоне формирования ударной волны, так и на участке постоянства ее скорости. В нашем эксперименте контактные разрывы наблюдались на расстоянии, более чем вдвое превышающем длину зоны формирования ударной волны. На рис. 1,*а* дана временная развертка движения ударной волны и контактной поверхности в зоне формирования ударной волны, на рис. 1,*6* — схема развертки.

По разверткам течения измерялась скорость движения контактных разрывов. Непосредственно за ударной волной она хорошо согласуется со скоростью потока, вычисленной по законам сохранения на ударной волне. Расхождение между измеренной и вычисленной скоростью не превышает 5%. Ошибка в измерении скорости контактных разрывов и ударной волны равна 3%. На рис. 2,а показано распределение скорости потока за ударной волной. По оси абсцисс отложено расстояние l в мм от ударной волны, по оси ординат — скорость V потока в м/сек. Две нижние кривые получены в зоне формирования ударной волны, остальные — в зоне постоянства ее скорости. Опыты проведены при давлении в камере ударной трубы $p_4=7,5$ атм и давлении в канале $p_0=50$ мм рт. ст. Как видно из рисунка, скорость потока за ударной волны на малых расстояниях от диафрагмы скорость потока резко возрастает от ударной волны к контактной поверхности почти на 20%.

После формирования ударной волны на больших расстояниях от диафрагмы значительное возрастание скорости потока (на 10%) наблюдается только у контактной поверхности. Это хорошо иллюстрирует рис. 2,6. По координатным осям отложены те же величины, что и на рис. 2,*a*. Кривые 1, 4, 6 дают зависимость V = V(l) для разных чисел M сформировавшейся ударной волны на одном и том же расстоянии от диафрагмы l/D = 22.

Рис. 2. Распределение скорости потока V(l) и скорости звука C(l) за ударной волной: слева — распределение V(l) на расстояниях l/d=5, 11, 14 и 19 калибров от диафрагмы (начиная с нижней кривой). Начальные условия одинаковые для всех V(l); справа — распределение C(l) и V(l) на расстоянии l/D=22 калибра от диафрагмы

На развертках движения сформировавшейся ударной волны видны наклонные линии. Это следы движения слабых возмущений в потоке газа за ударной волной. По углу наклона этих линий к оси времени вычислялась скорость возмущений V+C (V — скорость потока, C — скорость звука). В одном и том же опыте измеряли распределение скорости потока V и скорости возмущений V+C за ударной волной. Из этих данных было определено распределение скорость звука C за ударной волной. Непосредственно за ударной волной скорость звука удовлетворительно согласуется с вычисленной по законам сохранения на ударной волне. Максимальное расхождение составляет 20%. Ошибка в измерении скорости слабых возмущений равна 5%. Ошибка в измерении величины скорости звука — 8%. Распределение V(l) и [V+C] (l) получено методом наименьших квадратов.

На рис. 2,6 кривые 2, 3, 5 дают распределение скорости звука по пробке воздуха для разных чисел *M* сформировавшейся ударной волны (*l/D=22*). Как видно из рисунка, в противоположность скорости потока скорость звука убывает от ударной волны к контактной поверхности.

На рис. З представлена безразмерная скорость потока V_k/V_1 и скорость звука C_k/C_1 у контактной поверхности в зависимости от относительного расстояния ударной волны от диафрагмы l/l_{Φ} . Данные получены для различных начальных давлений P_0 в канале и скорости звука C_4 в камере ударной трубы. Здесь V_k , C_k — скорость потока и скорость звука непосредственно у контактной поверхности, V_1 и C_1 — скорость потока и скорость звука непосредственно за ударной волны l_{-} — расстояние от диафрагмы, l_{Φ} — длина зоны формирования ударной волны.

Как показывает график, в условиях нашего эксперимента увеличение безразмерной скорости потока V_k/V_1 и уменьшение безразмерной скорости звука C_k/C_1 у контактной поверхности зависит только от положения ударной волны и не зависит ни от числа M ударной волны, ни от скорость звука в камере ударной трубы. В зоне формирования ударной волны скорость потока у контактной поверхности может превышать скорость потока около ударной волны более чем на 20%, а скорость звука у контактной поверхности может быть меньше скорости звука около ударной волны более чем на 10%. На расстояниях, больших зоны формирования ударной волны, примерно с $l/l_{\Phi} = 1,5$ безразмерная скорость потока V_k/V_1 и безразмерная скорость звука C_k/C_1 у контактной поверхности остаются почти постоянными. При этом скорость потока у контактной поверхности больше скорости потока около ударной волны C_k/C_1 у контактной поверхности остаются потока V_k/V_1 и безразмерная скорость потока V_k/V_1 и безразмерная скорость потока у C_k/C_1 у контактной поверхности остаются почти постоянными. При этом скорость потока у контактной поверхности больше скорости потока около ударной волны на 10%,

а скорость звука у контактной поверхности меньше скорости звука около ударной волны на 4%.

Неоднородность кинематических параметров за сформировавшейся ударной волной объясняется механизмом ее образования. Ударную волну догоняют волны сжатия. Контактный разрыв, образующийся при их взаимодействии, движется со

VK/V, : CK/C, 1,4 + • 1 . 2 1.2 × 3 Fac - 4 1,0 CK/C 05 0.8 - 0.6 • 7 0.6l/la 0 0,5 1.0 2.0 3.0

Рис. 3. Зависимость безразмерной скорости потока V_h/V₁ и скорости звука С_k/С₁ у контактной поверхности от положения ударной волны в ударной трубе: 1 — p₀=90, $2 - p_0 = 135, \quad 3 - p_0 = 260, \quad 4 - 200 = 260, \quad 4 - 200 = 200, \quad 4 - 200, \quad$ $p_0=50, 5 - p_0=60$ мм рт. ст. при $C_4=735$ м/сек; $6 - p_0=60, 7$ p0=50 мм рт. ст. при C4= =350 м/сек

скоростью потока за ударной волной. Так как ударная волна движется ускоренно, то каждый последующий контактный разрыв должен двигаться быстрее предыдущего. Такая картина действительно наблюдается в некоторых опытах на малых расстояниях от диафрагмы при (1/D≤4,5).

Ударную волну догоняет множество волн сжатия. Более поздние волны сжатия взаимодействуют с контактными разрывами, образованными ранее. При этом контактный разрыв ускоряется. Очевидно. что каждый предыдущий контактный разрыв встречает больше волн сжатия, чем последующий. Поэтому скорость потока растет быстре у контактной поверхности.

Наличие множества контактных разрывов в потоке газа за ударной волной указывает и на существенную неоднородность температуры и плотности в нем. Неоднородность температуры за ударной волной и объясняет, очевидно, обнаруженное в опыте распределение скорости звука по пробке воздуха.

Автор благодарит проф. А. С. Предводителева и доц. Ф. В. Шугаева за обсуждение полученных результатов.

ЛИТЕРАТУРА

- 1. White D. R., Fluid J. Mech., 4, 585, 1958.
- 2. Киреев, Рузавин и др. «Изв. АН СССР». МЖГ, № 2, 120—128, 1969.
- 3. Баженова Т. В. В сб.: «Физическая газодинамика и теплообмен». М., 1961. 4. Сыщикова М. П., Семенов А. Н., Березкина М. К. В сб.: «Аэрофизические исследования сверхзвуковых течений». М., 1967.
- 5. Немков Р. Г. В сб.: «Физическая газодинамика ионизированных и химических реагирующих газов». М., 1968.
- 6. Жмаева, Харитонов. «Изв. АН СССР». МЖГ, № 6, 131—136, 1971. 7. Штеменко Л. С. «Вестн. Моск. ун-та», физ., астрон., № 1, 1967.

Поступила в редакцию 23.2 1973 г.

Кафедра молекулярной физики

УДК 550.382.3

Г. П. КУДРЯВЦЕВА, О. Г. МАМЕДОВ, В. И. ТРУХИН

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ МАГНИТНОЙ ВЯЗКОСТИ НЕКОТОРЫХ ПРИРОДНЫХ МИНЕРАЛОВ

Различные магнитовязкие эффекты достаточно хорошо изучены на ферромагнетиках и ферритах [4]. С точки зрения магнетизма горных пород и палеомагнетизма важно знать, как проявляются эти эффекты на минералах сложного состава, возникающих в природных условиях.

В данной работе изучались образцы из «магнетитового потока» древнечетвертичного вулкана Лако (Сев. Чили). Определение минералогического состава образцов производилось методами световой оптической микроскопии, рентгеновской дифрактометрии, первичного рентгеноспектрального микро- и макроанализа, а также химикоаналитическими методами [2].

Минералогические исследования привели к выводу, что в состав образцов входят магнетит Fe₃O₄, маггемит γ —Fe₂O₃ и мартит (вторичный гематит α —Fe₂O₃, образо-