а скорость звука у контактной поверхности меньше скорости звука около ударной волны на 4%.

Неоднородность кинематических параметров за сформировавшейся ударной волной объясняется механизмом ее образования. Ударную волну догоняют волны сжатия. Контактный разрыв, образующийся при их взаимодействии, движется со

Рис. З. Зависимость безразмерной скорости потока V_k/V₁ и скорости звука C_k/C₁ у контактной поверхности от положения ударной вол-ны в ударной трубе: 1 — $p_9 = 90$, $2 - p_0 = 135, \quad 3 - p_0 = 260, \quad 4 - 260, \quad 4 = 260,$ $p_0=50, 5 - p_0=60 \text{ mm pt. ct.}$ $p_0=50, 5 - p_0=60 \text{ mm pt. ct.}$ $p_0=50 \text{ mm pt. ct.}$ $p_0=60, 7 - p_0=60, 7 - p_0=50 \text{ mm pt. ct.}$ $p_0=50 \text{ mm pt. ct.}$ $p_0=60, 7 - p_0=60, 7 - p$ =350 м/сек

скоростью потока за ударной волной. Так как ударная волна движется ускоренно, то каждый последующий контактный разрыв должен двигаться быстрее предыдущего. Такая картина действительно наблюдается в некоторых опытах на малых расстояниях от диафрагмы при (1/D≤4,5).

Ударную волну догоняет множество волн сжатия. Более поздние волны сжатия взаимодействуют с контактными разрывами, образо-ванными ранее. При этом контактный разрыв ускоряется. Очевидно. что каждый предыдущий контактный разрыв встречает больше волн сжатия, чем последующий. Поэтому скорость потока растет быстре у контактной поверхности.

Наличие множества контактных разрывов в потоке газа за ударной волной указывает и на существенную неоднородность температуры и плотности в нем. Неоднородность температуры за ударной волной и объясняет, очевидно, обнаруженное в опыте распределение скорости звука по пробке воздуха.

Автор благодарит проф. А. С. Предводителева и доц. Ф. В. Шугаева за обсуждение полученных результатов.

ЛИТЕРАТУРА

- 1. White D. R., Fluid J. Mech., 4, 585, 1958. 2. Киреев, Рузавин и др. «Изв. АН СССР». МЖГ, № 2, 120—128, 1969. 3. Баженова Т. В. В сб.: «Физическая газодинамика и теплообмен». М., 1961. 4. Сыщикова М. П., Семенов А. Н., Березкина М. К. В сб.: «Аэрофизические исследования сверхзвуковых течений». М., 1967.
- 5. Немков Р. Г. В сб.: «Физическая газодинамика ионизированных и химических реагирующих газов». М., 1968.
- 6. Жмаева, Харитонов. «Изв. АН СССР». МЖГ, № 6, 131—136, 1971. 7. Штеменко Л. С. «Вестн. Моск. ун-та», физ., астрон., № 1, 1967.

Поступила в редакцию 23.2 1973 г.

Кафедра молекулярной физики

УДК 550.382.3

Г. П. КУДРЯВЦЕВА, О. Г. МАМЕДОВ, В. И. ТРУХИН

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ МАГНИТНОЙ ВЯЗКОСТИ НЕКОТОРЫХ ПРИРОДНЫХ МИНЕРАЛОВ

Различные магнитовязкие эффекты достаточно хорошо изучены на ферромагнетиках и ферритах [4]. С точки зрения магнетизма горных пород и палеомагнетизма важно знать, как проявляются эти эффекты на минералах сложного состава, возникающих в природных условиях.

В данной работе изучались образцы из «магнетитового потока» древнечетвертич-ного вулкана Лако (Сев. Чили). Определение минералогического состава образцов производилось методами световой оптической микроскопии, рентгеновской дифрактометрии, первичного рентгеноспектрального микро- и макроанализа, а также химикоаналитическими методами [2].

Минералогические исследования привели к выводу, что в состав образцов входят магнетит Fe_3O_4 , маггемит $\gamma - Fe_2O_3$ и мартит (вторичный гематит $\alpha - Fe_2O_3$, образовавшийся из у—Fe₂O₃). При этом магнетит и маггемит образуют твердый раствор, а мартит является самостоятельной минералогической фазой.

Магнитная вязкость изучалась на трех образцах с разным относительным содержанием магнетита — маггемита и мартита. В образцах было разное количество (в молекулярных процентах) ионов Fe²⁺. В образце A1 было 1,52% ионов Fe²⁺, в A2 — 13,34%, в A3 — 0,12%.

Эксперименты проводились на усовершенствованном рок-генераторе [3]. Установка давала возможность вести непрерывную запись спада вязкой остаточной намагниченности I_{rv} в отсутствие магнитного поля от —160 до 400°С, начиная с t'=1 сек (t' — время, отсчитываемое с момента выключения намагничивающего поля H=30 *э*, которое намагничивало образец в течение 1000 сек). Цена деления прибора 1,6·10⁻⁷ сс/дел.

Пример кривых спада $I_{rv}(\ln t')$ для разных образцов при $T = -160^{\circ}$ С приведен на рис. 1. Кривые $I_{rv}(\ln t')$ обрабатывались в соответствии с теорией Нееля [4], ко-

Рис. 1

Рис. 2

торая предполагает наличие спектра времен релаксации (τ_1 и τ_2 — минимальное и максимальное время релаксации в спектре τ). Коэффициент S'_e характеризует наклон прямолинейного участка (a-b на рис. 1). Энергия активации релаксационного процесса рассчитывалась приближенно по формулам

$$E_A \approx rac{kTI_{rv}(0)}{S'_{\star}}$$
 и $E_A = rac{k \partial \ln \tau_2}{\partial (1/T)}$,

где k — постоянная Больцмана, $I_{rv}(0)$ — значение намагниченности сразу после выключения намагничивающего поля.

Температурные зависимости коэффициентов S'_e для образцов A1, A2 и A3 представлены на рис. 2. Эти зависимости имеют сложный характер, но при всех температурах S'_e для образца A2 больше, чем для A1 и A3. Наибольшая величина S'_e наблюдается у образца с самым большим количеством Fe²⁺. Максимум S'_e у A2 при $T = -160^{\circ}$ С, по-видимому, обусловлен электронным упорядочением в магнетите. Природа максимума при $T = -55^{\circ}$ С не совсем ясна. Судя по значению энергии активации ($E_A = 0,09$ эв), этот максимум также связан с электронно-диффузионными процессами. Диффузией вакансий этот максимум объяснить нельзя, так как у образца A1 с большим содержанием вакансий, чем у A2, максимума при этой температуре не наблюдается. При разных температурах получены различные значения энергий активации и спектров времен релаксации, которые определяются отношением τ_2/τ_1 (см. таблицу). Различия в E_A и спектрах τ обусловлены, по-видимому, тем, что при разных

температурах действуют различные механизмы диффузии.

Значения E_A даны в эв, относительная ошибка расчета E_A равна 15—20%. Магнитовязкие процессы на природных ферритах, как это видно из таблицы, определяются довольно широким спектром времен релаксации, что говорит об одновременном протекании диффузионных процессов с существенно разными постоянными τ (и соответственно энергиями активации).

Образцы	T° C	-160	-120	-80	—55	-25	22	50	100
A2	${E_A \over au_2/ au_1}$	$0,06 7.10^2$	0,07 $2 \cdot 10^2$	0,06 4.10 ¹	$0,09 \\ 1 \cdot 10^2$	0,28 5∙10⁵	0,22 1.10 ⁵	0,20 1.10 ³	0,26 3.10 ³
Al	$rac{E_A}{ au_2/ au_1}$	0,10 4.10 4	0,10 2·10 ³	-	-	-	0,37 2·10 ⁶	0,35 3·10 ⁵	0,32 2.104
A3	$E_A \over au_2/ au_1$	0,20 2.10 ⁷	$0,06 \\ 1 \cdot 10^2$	0,11 5·10 ²		_	0,11 8·10	0,12 7·10	0,11 3·10

Наличие широкого спектра τ и малые величины E_A указывают на электронно-диффузионное последействие в исследованных образцах. Этот вывод подтверждается экспериментами по изучению Se природного гематита. В стехиометрическом a-Fe2O3 отсутствуют ионы Fe2+, у природного наблюдалась вязкость (рис. 2, кривая 3), при температурах $-160^{\circ} - +100^{\circ}$ С с энергией $E_A = 0, 1-0, 2$ эв. Наличие максимума S_{\bullet} при T = -160° С, несвойственного гематиту, позволяет предположить, что вязкость природного гематита обусловлена примесями, содержащими ионы Fe²⁺.

ЛИТЕРАТУРА

- Трухин В. И. «Изв. АН СССР», физика Земли, № 4, 66—77, 1972.
 Жиляева В. А., Колесников А. В., Петрова Г. Н. «Изв. АН СССР», физика Земли, № 10, 59—70, 1970.
 Бураков К. С., Мамедов О. Г., Трухин В. И. В сб.: «Тезисы докладов
- IX Всесоюзной конференции по геомагнетизму». Баку, 1973.
- 4. Neel L. Phys. Rad., 13, 249, 952.

Поступила в редакцию 30.3 1972 г.

Кафедра физика Земли УДК 539.293: 539.37

В. М. ЯРЦЕВ

ДЕФОРМАЦИИ ВБЛИЗИ ИЗОЭЛЕКТРОННОЙ ПРИМЕСИ

Изоэлектронный примесный центр может иметь уровни в запрещенной зоне и связывать дырку или электрон проводимости. Связанное состояние образуется выполнении условия [1, 2]:

$$1 + \frac{I}{\overline{E}} \leqslant 0, \tag{1}$$

где $\overline{E}^{-1} = \Omega (2\pi)^{-3} \int E^{-1}(\vec{k}) d\vec{k}$, Ω — объем элементарной ячейки, $E(\vec{k})$ дисперсии, I — диагональный матричный элемент потенциала примеси на соответствующих функциях Ванье. В работе [3] найдены численные значения *I* для различных модельных потенциалов примесного центра, где учитывались экранирование, спинорбитальное взаимодействие, деформация решетки. Остановимся более подробно на последнем эффекте. Деформация решетки — это смещение атомов основного вещества при введении примесного центра за счет отличия длины невозмущенной ковалентной связи примеси R_i от длины такой связи в кристалле основного вещества R_h . Для характеристики деформации удобно использовать величину относительного смещения

$$x = \frac{R}{R_i - R_h}, \quad 0 \le x \le 1, \tag{2}$$

где R — смещение ближайших соседей.

124