Вестник московского университета

№ 3-1974

УДК 537.523.74

ECAN

Д. Х. АБДРАШИТОВА, М. Б. ГУСЕВА

РАСПЫЛЕНИЕ КОНЦЕНТРАЦИИ ЧАСТИЦ В ПЛАЗМЕ ИОННОГО ИСТОЧНИКА С ОСЦИЛЛЯЦИЕЙ ЭЛЕКТРОНОВ В МАГНИТНОМ ПОЛЕ И КАТОДНЫМ РАСПЫЛЕНИЕМ

В настоящей работе экспериментально получено распределение концентрации зарядов в плазме ионного источника с осцилляцией электронов в магнитном поле и накаленным катодом, помещенным в объем разряда. Показано влияние на структуру плазменного столба собственного магнитного поля катодной спирали, а также возможное увеличение концентрации частиц, введением отрицательного электрода вокруг катода.

Разряд с осцилляцией электронов в магнитном поле теоретически и экспериментально изучался в [1—4]. Был рассмотрен случай, когда тонкий электронный пучок вводится извне в разряд вдоль оси. Для такого разряда характерно гауссово распределение зарядов плазмы по радиусу.

Однако в большинстве практических случаев катод в виде спирали располагается в объеме разряда. Это не может не привести к особенностям, рассмотренным в [1 и 2]. В частности, на распределении концентрации зарядов может сказаться форма катода, поскольку механизм контракции плазмы в магнитном поле таков, что электроны «навиваются» на силовые линии магнитного поля. Кроме того, определенную роль может играть магнитное поле спирали и в связи с этим способ питания катода постоянным или переменным током.

Наш интерес к этому разряду вызван намерением использовать его в качестве источника ионов металлов. Цилиндрический прикатодный электрод, распылением которого под действием ионной бомбардировки пары металла вводятся в атмосферу разряда, как это описывается в [5], вносит дополнительные особенности в характеристики разряда и, очевидно, влияет на его параметры.

В связи с этим в настоящей работе проводится исследование модифицированного разряда вышеупомянутого типа, включающего отрицательно заряженный прикатодный электрод.

Экспериментальные исследования

Схематическое изображение разрядной камеры представлено на рис. 1. Тонкий молибденовый зонд, изолированный по всей длине, кроме

конца, выступающего на 4 *мм*, ориентирован по магнитному полю и может перемещаться по радиусу в плоскости выходного отверстия. Вольтамперные зондовые кривые снимались не вручную, а записывались двухкоординатным самопишущим потенциометром за время около 30 *сек*. Параметры плазмы определялись по ионным частям зондовых

Рис. 1. Схема разрядной камеры

характеристик [6, 7]. Потенциал горения разряда 55 в, рабочее давление 2—3·10⁻³ мм рт. ст.

На рис. 2 представлено полученное таким образом распределение концентрации зарядов в плазме по радиусу разрядной камеры в плоскости отражения, где обычно располагается выходное отверстие ионного источника: *а* — катодная спираль накаливается

постоянным током, магнитное поле которого внутри спирали совпадает по направлению с приложенным внешним магнитным полем

$$(H_{_{\mathrm{PH}}} \uparrow \uparrow H_{_{\mathrm{K}}}, \quad H_{_{\mathrm{K}}} \cong 100 \ \vartheta);$$

d — ток накала катода имеет направление, противоположное тому, что в случае a

$$(H_{\rm BH} \uparrow \downarrow H_{\rm K}, \quad H_{\rm K} \simeq 100 \ \vartheta)$$

и в — питание катода осуществляется переменным током; 1 — относится к обычному заряду с осцилляцией электронов в магнитном поле (катод помещается внутри анодного цилиндра с потенциалом V_a , когда $V_{oбp} = = V_a$), 2 — к рассматриваемой модификации (катод окружен цилиндромобразцом с потенциалом, меньшим катодного $V_{\rm R}$, $V_{oбp} \leq V_{\rm R}$).

Как видно, направление тока накала катодной спирали существенно сказывается на радиальном распределении концентрации зарядов в плазме разряда. Если внешнее однородное магнитное поле $H_{\rm BH}$ и магнитное поле катодной спирали $H_{\rm K}$ на оси камеры имеют взаимно противоположные направления $H_{\rm BH} \uparrow \downarrow H_{\rm K}$, то на оси разрядной камеры 1 получаем максимальную плотность плазмы, а радиальное распределение n(r) близко к гауссову, аналогично [1].

В остальных двух случаях кривая n(r) имеет минимум в центре, а концентрация плазмы максимальна при $r \approx r_k$ в случае в и при $r \approx 1,4 r_k$ в случае a.

Введение отрицательного электрода, соосного с катодной спиралью, приводит к увеличению концентрации, характеризуемому $\varkappa = \frac{n_2(r)}{n_1(r)}$,

и определенному изменению структуры плазменного столба. Однако характер этого увеличения различен в трех рассматриваемых случаях различных ориентаций H_h . В случае $a \varkappa$ максимально на оси разряда, что, очевидно, связано со смещением координаты максимальной концентрации в сторону центра. В случаях б и в максимум концентрации находится на расстоянии от оси, близком радиусу катодной спирали.

Наблюдаемые явления можно объяснить, исходя из следующих соображений. Три рассмотренных случая различаются топографией неоднородного магнитного поля в области катода H_{Σ} , полученного суперпозицией внешнего однородного поля $\vec{H}_{\rm BH}$ и поля катодной спирали \vec{H}_{h} . Степень неоднородности суммарного поля H_{Σ} неодинакова при различных $H_{\rm BH}$ и максимальна при $H_{\rm BH} \sim H_{h}$. В случае б при этом создаются условия магнитной электронной ловушки, способствующей удержанию значительной группы электронов в области катода. Электроны, вектор скорости которых составляет с век-

тором H_{Σ} «разрешенный» угол, выходят из ловушки, навиваясь на силовые линии и концентрируясь в соответствии со структурой магнитного поля (H_{Σ} — диффузно-плазменная контракция). При этом получаем максимум плотности зарядов в приосевой части камеры. Максимум на

периферии формируется, очевидно, электронами, эмиттированными наружной по отношению к оси частью спирали. В случае a и b в среднем за период случае b структура магнитного поля H_{Σ} обусловливает кольцевую структуру электронного и вместе с ним плазменного столба.

Введение образца с отрицательным по отношению к плазме потенциалом ($V_{odp} \leq V_k$) и связанный с ним уход частиц из объема плазмы приводят к появлению grad_z $V \approx 10 \ s/cm$ в области образца.

Рис. 3. Зависимость выходного ионного тока от напряженности внешнего магнитного поля при изменении потенциала образца $(I_a = \text{const}): 1 - V_{o \delta p} = V_a, 2 - V_{o \delta p} = 0, 3 - V_{o \delta p} = = -100, 4 - V_{o \delta p} = -200, 5 - V_{o \delta p} = -300, 6 - V_{o \delta p} = -400 \ \beta$

Рис. 4. Зависимость выходного ионного тока от напряженности внешнего магнитного поля при изменении накала катода ($I_a =$ =const): $1 - I_k = 12$, $2 - I_k = 13$, $3 - I_k = 14$, $4 - I_k = 15$ a

Продольное электрическое поле E_z порождает направленный вдоль оси дрейф электронов плазмы, увеличивает энергию первичных электронов, приходящуюся на продольную составляющую скорости. В связи с этим изменяются отражательные свойства магнитного зеркала в случае б. Так, при $H_{\rm BH} = 180$ э практически все первичные электроны проходят в область однородного магнитного поля.

Для значительной группы электронов, в том числе первичных, эмиттированных внутри определенного угла по отношению к оси, направленная скорость может существенно превосходить по величине хаотическую. В условиях неоднородного магнитного поля может быть получен электронно-оптический эффект. Электронно-оптический эффект на этих двух группах электронов, очевидно, и приводит к «селективности» контракции в случае б и сдвигу максимума контракции в сторону центра в случае а.

В пользу соображений об электронно-оптической контракции свидетельствуют закономерности изменения ионного тока, отбираемого через выходное отверстие в отражателе, от напряженности внешнего магнитного поля в случае б (рис. 3). При $H_{\rm BH} = 180 \ 9^{-1}$ зависимость

¹ Приведенное выше распределение концентрации плазмы по радиусу относится к этому же режиму $H_{\rm BH} = 180$ э, $I_a = 0.5$ а.

 $I^+ = f(H_{\text{вн}})$ (кривые 2—6) имеет ярко выраженный максимум, тогда как на кривой І при этом же значении напряженности поля наблюдается насыщение ионного тока. Выходной ионный ток в максимуме при наличии отрицательного прикатодного электрода может значительно превосходить I^+ для $V_{obp} = \dot{V}_a$. При увеличении H_{BH} графики $I^+ = f(H)_{Vobp} \leqslant V_h$ приближаются к 1.

Аналогично максимум тока на кривых (2-6) и соответствующий максимум концентрации на оси (рис. 2, б) пропадают при переходе к нагруженному режиму (рис. 4). В обоих случаях имеет место ухудшение условий электронно-оптической контракции: с увеличением напряженности внешнего магнитного поля уменьшается степень неоднородности H_{Σ} ; рост катодного падения в нагруженном режиме увеличивает хаотическую скорость электронов.

Таким образом, распределение концентрации в разряде с осцилляцией электронов в магнитном поле и накаленным катодом в объеме разряда может быть объяснено формой катода, структурой магнитного поля, учитывающей собственное магнитное поле катодной спирали, и функцией распределения электронов плазмы и первичного пучка по скоростям. При отсутствии направленных потоков электронов структура плазменного столба (n(r)) в основном воспроизводит структуру магнитного поля. В противном случае, если к тому же величина направленной скорости значительно превосходит хаотическую, картина распределения концентрации видоизменяется электронно-оптическими эффектами, чем и может быть объяснен «селективный» характер $\varkappa(r)$.

К изменению картины распределения концентрации зарядов в плазме могут приводить также колебания и шумы в разряде. В настоящей работе таких исследований не проводилось.

Разряд с осцилляцией электронов в магнитном поле и накаленным катодом в объеме разряда широко используется в ионных источниках. Полученные сведения по распределению концентрации в этом разряде могут быть полезны при конструировании соответствующих приборов и решении задачи эффективной экстракции ионов.

В заключение выражаем благодарность Г. В. Спиваку и Е. М. Дубининой за обсуждение результатов и полезные замечания.

ЛИТЕРАТУРА

1. Hoyaux M. J. Phys. Rad., 15, 264, 1954.

2. Ноуацх М., Lemaitre P., Gans P. J. Appl. Phys., **26**, 110, 1955. 3. Габович М. Д. Плазменные источники ионов. Киев, 1964. 4. Рейхрудель Э. М., Чернетский А. В. и др. ЖТФ, **22**, вып. 12, 1952. 5. Абдрашитова Д. Х., Гусева М. Б. «Вестн. Моск. ун-та», физ. астрон., **13**,

№ 5, 545, 1972.

6. Рейхрудель Э. М., Спивак Г. В. ЖЭТФ, 10, 1408, 1940.

7. Қаган Ю. М., Перель В. И. «Успехи физических наук», 81, 409, 1963.

Поступила в редакцию 30.5 1972 г.

Кафедра электроники