Здесь с — постоянная, зависящая от длины столба и самопоглощения, no — концентрация атомов в нормальном состоянии, ne — концентрация электронов, vok и Qok (v) потенциал и оптическая функция прямого возбуждения линии [2-4]. Считаем, что no постоянна по сечению разряда.

Полученное удовлетворительное совпадение (рис. 3) экспериментальных и расчетных кривых радиального распределения интенсивностей линий HeI и ArI позволяет сделать вывод, что при выбранных интервалах давлений газов при разрядных токах порядка 30 ма основным механизмом возбуждения энергетических уровней следует считать прямое электронное возбуждение. Совпадение эксперимента и расчета для магния, кроме того, подтверждает правильность предположения о равномерном распределении нормальных атомов магния по сечению разряда. Мы благодарны И. С. Алексахину за любезно предоставленные сечения возбуж-

дения магния.

ЛИТЕРАТУРА

1. Десан Ш. К., Каган Ю. М. «Оптика и спектроскопия», 27, 34, 1969. 2. Запесочный И. П., Фельцан П. В. «Оптика и спектроскопия», 20, 521, 1966.

3. Запесочный И. П. «Астрономический журнал», **43**, 954, 1966. 4. Алексахин И. С., Запесочный И. П., Гарга И. И., Стародуб В. П.

(в печати).

Поступила в редакцию 11.4 1973 г.

Кафедра электроники

УДК 621.374.4

М. Д. КАРАСЕВ

НЕЛИНЕЙНО-ПАРАМЕТРИЧЕСКОЕ ДЕЛЕНИЕ ЧАСТОТЫ В БОЛЬШОЕ ЧИСЛО РАЗ

В пассивной нелинейной резонансной системе, находящейся под внешним воздействием частоты ω , возможно установление колебаний на частоте $\frac{\omega}{m}, m \gg 1$, если интенсивность внешнего воздействия зависит от движения в системе. Движения в такой системе могут быть записаны уравнением

$$x + 2\delta(x) x + \Omega_0^2 [1 - \gamma(x)] x = P(x, x) \cos \omega t,$$
 (1)

где $\delta(x)$, $\gamma(x)$ — малые величины и $\delta(x) > 0$. Если, в частности, $P(x, x) = \lambda \Omega_0^2 x$, то (1) превращается в уравнение простейшей параметрической системы, в которой, как известно, могут возбуждаться колебания в первой, второй и т. д. областях неустойчивости, соответственно при $\Omega_0 \cong \frac{\omega}{2}$, ω и т. д. Причем с ростом номера области неустойчивости условия возбуждения быстро становятся трудно реализуемыми. При других видах зависимости P(x, x) возможно установление колебаний на различных комбинационных частотах и, в частности, на частоте $\Omega \equiv \Omega_0$, когда

$$\Omega = \frac{\omega}{m}$$
 (при целом $m \gg 1$). (2)

Перепишем (1) в виде:

 $\ddot{x} + \Omega^2 x = (\Omega^2 - \Omega_0^2) x - 2\delta(x) \dot{x} + \Omega_0^2 \gamma(x) x + P(x, \dot{x}) \cos \omega t$ (1')

и будем искать квазигармоническое решение:

$$x = a \sin \Omega t - b \cos \Omega t = A \sin (\Omega t - \varphi),$$

$$A = \sqrt{a^2 + b^2}, \qquad \varphi = \operatorname{arctg}\left(\frac{b}{a}\right).$$
(3)

365

Медленно изменяющиеся амплитуда A (t) и фаза φ (t) колебаний (3) определяются укороченными уравнениями

$$\frac{dA}{dt} = -\overline{\delta(A)}A + \frac{P_1(A, \varphi)\cos\varphi + P_2(A, \varphi)\sin\varphi}{2\Omega}, \qquad (4)$$

$$\frac{d\varphi}{dt} = \frac{\Omega^2 - \Omega_0^2}{2\Omega} + \frac{\overline{\gamma(A)}}{2\Omega} + \frac{P_2(A, \varphi)\cos\varphi - P_1(A, \varphi)\sin\varphi}{2\Omega A}.$$

В (4) величины $\overline{\delta(A)}$, $\overline{\gamma(A)}$ представляют собой усредненные по частоте Ω нелинейные параметры уравнения (1), а

$$P_{1}(A, \varphi) = P(x, \dot{x}) \cos \omega t \cos \Omega t,$$

$$P_{2}(A, \varphi) = \overline{P(x, \dot{x})} \cos \omega t \sin \Omega t$$
(5)

являются амплитудами компонентов внешнего воздействия на частоте Ω

$$P(x, x) \cos \omega t = P_1(A, \varphi) \cos \Omega t + P_2(A, \varphi) \sin \Omega t + \dots$$
(6)

Предположим, что внешнее воздействие (6) имеет кратковременный характер и совершается вблизи положения равновесия (x=0). Пусть

$$P(x, x) = P_0[\sigma_0(x + \Delta x) - \sigma_0(x - \Delta x), \qquad (\Delta x/A) \ll 1.$$
(7)

В этом случае P1 и P2 легко определяются и имеют вид

$$P_{1} = \cos \varphi \, \frac{2P_{0}}{\pi m} \cos m\varphi \sin m \, \frac{\Delta x}{A},$$

$$P_{2} = \sin \varphi \, \frac{2P_{0}}{\pi m} \cos m\varphi \sin m \, \frac{\Delta x}{A},$$
(8)

где т — нечетное.

Подставляя (8) в (4), получим

$$\frac{dA}{dt} = -\overline{\delta(A)}A + \frac{P(A, \varphi)}{2\Omega},$$
$$\frac{d\varphi}{dt} = \frac{\Omega^2 - \Omega_0^2}{2\Omega} + \frac{1}{2\Omega}\overline{\gamma(A)},$$
(9)

где

$$P(A, \varphi) = \frac{2P_0}{\pi m} \cos m\varphi \sin m \frac{\Delta x}{A}.$$

Сила Р (А, ф) в первом уравнении (9) резко зависит от А и ф. Эта зависимость обеспечивает амплитудную устойчивость и при чисто линейном затухании, когда

$$\delta(A) = \delta. \tag{10}$$

Мы видим, что нелинейность затухания не играет принципиальной роли в механизме установления колебаний на частоте $\varphi = (\omega/m)$. В то же время реактивная нелинейность $\overline{\gamma(A)}$, представляющая неизохронность свободных колебаний, обеспечивает установление колебаний.

Малая реактивная нелинейность может быть аппроксимирована известным выражением

$$\gamma(x)\cong\gamma x^2$$
.

Учтя это, подставив (10) в (9) и положив расстройку равной

$$\frac{\Omega^2 - \Omega_0^2}{2\Omega} \cong \Omega - \Omega_0 = -\Delta\Omega, \tag{11}$$

преобразуем (9) к виду

$$\frac{dA}{dt} = -\delta A + \frac{P}{\pi m \Omega} \cos m\varphi \sin m \frac{Ax}{A}, \qquad (12)$$

$$\frac{d\varphi}{dt} = -\Delta\Omega + \frac{3}{4} \frac{\Omega_0^2}{2\Omega} \gamma A^2.$$

На рис. 1 приведены графики, определяющие стационарные амплитуды при различных значениях угла φ . В случае большого затухания (гипербола *a* на рис. 1) имеет место многозначность устойчивых амплитуд (устойчивые амплитуды отмечены кружками, неустойчивые — крестиками), при малом затухании (гипербола *б*) только первая устойчивая амплитуда практически реализуема, остальные устойчивые амплитуды близки по величине к соседним неустойчивым. Заметим, что малые изменения номера на графиках рис. 1, т. е. значения амплитуд для соседних номеров деления частоты мало различаются, если значение

частоты мало различаются, если значение φ остается фиксированным. Изменяя φ , из графика рис. 1 можно определить зависимость стационарной амплитуды $A = A_{\varphi}$ от фазы, характер этой зависимости показан на рис. 2. Амплитуда A_{φ} теряет устойчивость при ее некотором значении $A_{\varphi_1} = A_{\min}$, соответствующем фазе $\varphi_1 < (\pi/2m)$, когда пересечение гиперболы с синусоидой вырож-

дается в касание. Для первой возможной амплитуды это имеет место при $m(\Delta x/A)$, неколько превышающем $\pi/2$. Построив график второго уравнения (12) и используя зависимость рис. 2:

$$\frac{d\varphi}{dt} = f(\varphi) = -\Delta\Omega + \frac{3}{4} \frac{\Omega_0^2}{2\Omega} \gamma A_{\varphi}^2,$$

можно определить стационарные фазы φ_0 при $f(\varphi_0) = 0$, устойчивые, если [1]

$$\frac{d}{d\varphi}\left(\frac{d\varphi}{dt}\right)_{\varphi=\varphi_0} < 0.$$

Для заданных m, Ω и δ , при подходящем выборе P_0 и $\Delta\Omega$, можно получить одночастотный режим деления. Для этого график $\frac{d\varphi}{dt} = f(\varphi)$ должен иметь характер рис. 3, a, на котором кривая A_{φ} пересекается только одним уровнем расстройки. В других случаях возможны несколько устойчивых амплитуд, соответствующих разным, близлежащим номерам деления, что показано на рис 3, δ .

ным, близлежащим номерам деления, что показано на рис. 3, 6. При известных параметрах системы (1), пользуясь (10), можно рассчитать детали режима деления. В частности, для обеспечения одночастотного режима деления частоты должно удовлетворяться неравенство

$$\Delta AA_m < \frac{16}{3} \frac{1}{vm},$$

где A_m — амплитуда, обеспечивающая деление в *m* раз, а ΔA — разность между максимальной и минимальной величинами A_{φ} (рис. 2). Например, у маятника $\gamma = 1/6$ и, следовательно, одночастотный режим будет при $\Delta A \cdot A < 32/m$, т. е. при делении частоты, скажем, в 101 раз и при размахе колебаний маятника A = 1 радиан одночастотный режим будет обеспечен, если ΔA не превышает одной трети. В этом случае будут жестко устанавливаться колебания только с одним номером деления.

Итак, отметим основные особенности рассмотренного деления частоты в большое число раз. Во-первых, это независимость амплитуды колебаний от интенсивности внешней силы или добротности системы, при их изменении в широких пределах выше некоторой величины, обеспечивающей возбуждение колебаний. Фаза низкочастотных колебаний может изменяться только на малую величину, менее $\pi/2m$. Во-вторых, это возможность получить режим деления как одночастотный, так и для нескольких близлежащих частот, при различных амплитудах. В-третьих, при делении частоты возможно также превращение частотной модуляции в амплитудную, если модуляция достаточно медленна по сравнению с установлением колебаний.

Наблюдавшиеся в физической лаборатории Владимирского государственного педагогического института [2] стационарные колебания в резонансных электромеханических системах имеют, по нашему мнению, рассмотренную здесь природу

ЛИТЕРАТУРА

1. Теодорчик К. Ф. Автоколебательные системы. М., 1952.

 Пеннер Д. И., Дубошинский Я. Б., Дубошинский Д. Б., Козаков М. И. ДАН СССР, 204, 1965, 1972.

Поступила в редакцию 8.6 1973 г.

Кафедра физики колебаний

УДК 537.311.33

(13)

В. М. ЯРЦЕВ

О РОЛИ ТИПА СИММЕТРИИ ВОЛНОВОЙ ФУНКЦИИ ПРИМЕСНОГО ЭЛЕКТРОНА

Сравнение теоретических расчетов с экспериментальными данными [1, 2] показало, что короткодействующий потенциал вблизи глубокого центра значительно изменяет волновую функцию примесного электрона. Существующие расчеты сечения фотоиони-

зации глубоких центров выполнены для сферически симметричных волновых функций s-типа. Такой подход наверняка справедлив для водородоподобных примесей, когда имеется элек-трон, не участвующий в образовании ковалентной связи, с радиусом локализации, значительно превышающим постоянную решетки ао. Для большинства глубоких примесей радиус локализации электрона составляет 1÷2 a₀. На таких расстояниях от центра потенциал не обладает сферической симметрией и в волновой функции примесного электрона появляются гармоники с $l \neq 0$. Кроме того, необходимо принимать во внимание электронную структуру ионов примеси. Так, у примесных центров переходных металлов оптически активны

d-электроны. В работе [3] было вычислено сечение фотоионизации таких центров в пренебрежении изменением волновых функций примесных электронов короткодействующим потенциалом.

В настоящей заметке рассматривается влияние симметрии волновой функции примесного электрона, взятой с учетом короткодействующего потенциала на вид спектра фотоионизации. Интересуясь лишь эффектами симметрии, рассмотрим случай фото-