м вычисляя по формуле (12), получим при t>0 следующее распределение плотности вероятности:

$$|\Psi(\mathbf{r}, t)|^{2} = \frac{|C|^{2}}{\left[\pi\delta^{2}\left(1 + \frac{\hbar^{2}t^{2}}{|m^{2}\delta^{4}}\right)\right]^{1/2}} \exp\left\{-\frac{z^{2}}{\delta^{2}\left(1 + \frac{\hbar^{2}t^{2}}{m^{2}\delta^{4}}\right)}\right\} \times \left[\frac{aa^{*}}{ch\,2\omega t}\exp\left\{-\frac{m\omega}{\hbar\,ch\,2\omega t}\left(\rho - \rho_{0}\,ch\,\omega t - \frac{\mathbf{p}_{\rho}}{m\,\omega}\,sh\,\omega t\right)^{2}\right\} + \beta\beta^{*}\exp\left\{-\frac{m\omega}{\hbar}\left(\rho - \rho_{0}\,\cos\omega t - \frac{\mathbf{p}_{\rho}}{m\omega}\,\sin\omega t\right)^{2}\right\}\right].$$
(19)

Выражение (19) показывает, что в таком поле частицы со спином против направления поля удерживаются в радиальном направлении (волновые пакеты их в этом направлении не расплываются), а частицы со спином по направлению поля, наоборот, уходят в радиальном направлении (волновые пакеты их расплываются).

ЛИТЕРАТУРА

- 1. Корсунский М. И., Фогель Я. М. ЖЭТФ, 21, 25, 1951.
- 2. Абов Ю. Г., Гулько А. Д., Крупчицкий П. А. Поляризованные медленные нейтроны. М., 1966.
- 3. Бом Д. Квантовая механика. М., 1965.

4. Файн В. М. Фотоны и нелинейные среды. М., 1972.

- 5. Владимирский В. В. ЖЭТФ, 39, 1062, 1960.
- 6. Соколов А. А. Введение в квантовую электродинамику. М., 1958.
- 7. Ландау Л. Д., Лифшиц Е. М. Квантовая механика. М., 1963.
- 8. Гольдман И. И., Кривченков В. Д. Сборник задач по квантовой механике. М., 1957.
- 9. Куканов А. Б., Тхай Куанг. «Ж. вычисл. матем. и матем. физ.», 14, № 2, 489, 1973.
- 10. Фейнман Р. П., Хибба А. Р. Квантовая механика и интегралы по траекториям. М., 1968.

Поступила в редакцию 1.11 1972 г.

Ч

Кафедра теоретической физики

УДК 539.145

Н. З. МИРЯССВ, В. П. ТАСКАЕВ

О ВЛИЯНИИ ТЕРМОМАГНИТНОЙ ОБРАБОТКИ НА ЭФФЕКТ ХОЛЛА В Со-СОДЕРЖАЩИХ ФЕРРИТАХ

В работе исследуется влияние на поле Холла магнитной одноосной анизотропии, искусственно созданной методом термомагнитной обработки (ТМО).

Как известно, в некоторых ферро- и ферримагнетиках кубической симметрии ТМО вызывает одноосную магнитную анизотропию дополнительно к любым другим типам анизотропии, которые могли существовать первоначально.

Если материал изотропен или представляет собой поликристалл, то ось легкого намагничивания обычно совпадает с направлением поля, приложенного при ТМО. Намагничивание образца, прошедшего ТМО, производится одинаково легко в обоих направлениях вдоль этой оси, а петля гистерезиса принимает прямоугольную форму.

Исследованию подверглись приготовленные с помощью керамической технологии поликристаллические образцы следующих составов:

 $\operatorname{Co}_{x}(\operatorname{Ni}_{0.50}\operatorname{Cu}_{0.50})_{1-x}\operatorname{Fe}_{2}O_{4}$ (x = 0,06, 0,08)

 $Cu_{0.95-x} Co_x Fe_{2.05} O_4$ (x = 0,1, 0,5, 0,7).

Образцы были предварительно закалены с температуры 800—900° С до комнатных температур с целью избежать одноосной анизотропии при охлаждении ниже точки Кюри под действием спонтанной намагниченности в доменах.

ТМО-ферритов осуществлялась в поле электромагнита H=6800 э при температуре 270° С в течение 2 ч.

Измерения эффекта Холла производились на образцах до и после ТМО. Это позволило выявить влияние ТМО на величину и характер изменения поля Холла. После наведения одноосной анизотропии эффект Холла измерялся в двух направлениях относительно оси легкого намагничивания. В одном случае магнитное поле H было параллельно магнитному полю при термомагнитной обработке $H_{\rm TMO}$, т. е. было направлено вдоль оси легкого намагничивания L_s , в другом случае H было перпендикулярно $H_{\rm TMO}$, т. е. направлено вдоль оси трудного намагничивания.

Рис. 1. Зависимость спонтанного поля Холла E_s от T для Со-содержащих ферритов: $1 \text{ и } 1' - (E_s \parallel L_s)$ для $\text{Со}_{0,06}$ ($\text{Сu}_{0,50}$ $\text{Ni}_{0,50}$)_{1-0,06} Fe₂O₄; $2 \text{ и } 2' - (E_s \perp L_s)$ для $\text{Со}_{0,08}$ ($\text{Сu}_{0,50}\text{Ni}_{0,50}$)_{1-0,08} Fe₂O₄; $3 \text{ и } 3' - (E_s \perp L_s)$ для $\text{Сu}_{0,85}$ Со_{0,10} Fe_{2,05}O₄; $4, 4' - (E_s \parallel L_s)$ для $\text{Сu}_{0,85}$ Со_{0,10} Fe_{2,05}O₄. Кривые 1, 2, 3, 4 соответствуют измерениям до ТМО, 1', 2', 3', 4' — после ТМО

Измерения поля Холла показали, что величина его изменяется в результате ТМО и зависит от взаимной ориентации поля Холла E_{xon} и оси легкого намагничивания L_s .

Влияние ТМО на поле Холла можно проследить сравниванием кривых зависимости спонтанного поля Холла E_s и температуры T (рис. 1). Из рисунка видно, что в случае, когда E_s параллельно оси легкого намагничивания L_s наведенной анизотропии, поле Холла убывает после ТМО, а при $E_s \perp L_s$ возрастает. Это имеет место для ферритов с малой концентрацией ионов кобальта. В случае больших концентраций Co²⁺ наблюдается рост эффекта Холла в обоих случаях, но при $E_s \perp L_s$ возрастание его было больше, чем при $E_s || L_s$.

Из рис. 1 также видно, что с ростом T кривые $E_s(T)$ для образца, прошедшего ТМО и не подвергнутого этой обработке, сближаются. При высоких T, возможно, эти кривые сливаются.

Измерение поля Холла на образцах до ТМО производилось при температурах ниже 100° С, где внешнее поле *H*, действующее в процессе измерения, не способно еще навести ощутимую одноосную анизотропию.

Температурная зависимость аномальной константы Холла R_s исследованных образцов показала, что для всех ферритов R_s экспоненциально зависит от T. Было установлено, что при ТМО происходит изменение энергии активации аномальной констан-

ты Холла E_{Rs} , определяемой из зависимости $\log R_s \left(\frac{1}{T}\right)$. После ТМО в случае, когда

Состав феррита	Ориентация L _S и E _S	E _{Rs} , э	
		до ТМО	после ТМО
Cu _{0,85} Co _{0,10} Fe _{2,05} O ₄	$E_{s} \perp L_{s}$	0,13	0,1
$Co_{0,08} (Cu_{0,50}Ni_{0,50})_{1-0,08}Fe_{2}O_{4}$	$E_{s} \perp L_{s}$	0,18	0,15
$Cu_{0,45}Co_{0,50}Fe_{2,05}O_4$	$E_{s} \perp L_{s}$	0,22	0,17
$\mathrm{Co}_{0,06}(\mathrm{Cu}_{0,50}\mathrm{Ni}_{0,50})_{1-0,06}\mathrm{Fe_2O_4}$	$E_{s} \parallel L_{s}$	0,15	0,16
$Cu_{0,25}Co_{0,70}Fe_{2,05}O_4$	$E_{s} \parallel L_{s}$	0,10	0,13
$Cu_{0,45}Co_{0,50}Fe_{2,05}O_{4}$	$E_s \parallel L_s$	0,10	0,13
	1	i	1

 $E_s \| L_s$, во всёх наших исследованиях E_{R_s} слегка возрастает. В случае, когда $E_s \perp L_s$, энергия активации E_{R_s} , наоборот, уменьшается (см. табл.).

Было установлено, что изменение энергии активации линейно зависит от кон-центрации ионов Co²⁺ (рис. 2). На рис. 2 1 соответствует возрастанию энергии акти-вации E_{R_s} , 2 — ее уменьшению. Экстраполируя зависимость Δ_{R_s} от x к оси ΔE_{R_s} (x=0), получим некоторые значения ΔE_{R_s} , отличные от нуля. Это указывает, вероятно, на то, что в образовании одноосной анизотропии при ТМО кроме ионов Co²⁺ участна то, что в образовании одновской анизотроний при тихо кроме ионов Со- участ-вуют и другие магнитные ионы, входящие в состав феррита. Данный вывод, в част-ности, находится в согласии с выводами Н. Л. Брюхатова и др.¹, которые показали, что ТМО подвергаются не только Со-содержащие ферриты, но и другие ферриты. Как показали измерения, ТМО практически не сказывается на характере изме-нения электросопротивления с температурой и на энергии активации проводимости.

ТМО сказывается в основном лишь на характере рассеяния носителей тока на спинарной системе.

Поступила в редакцию 16.10 1973 г.

Кафедра магнетизма

УДК 536.22:551.463

С. Н. ПРОТАСОВ

РАСЧЕТ СУТОЧНОГО ХОДА ТЕМПЕРАТУРЫ поверхностного слоя моря

Натурные исследования турбулентного теплообмена в поверхностном слое моря свидетельствуют о суточном ходе коэффицеинта обмена [1], причем в период нагрева при безоблачной и штилевой погоде амплитуда последнего по величине близка к его среднесуточному значению. Суточный ход турбулентного обмена (усиление в ночные часы и ослабление в дневные) должен отражаться на формировании температуры поверхностного слоя моря.

Если считать, что температурное поле верхнего слоя моря формируется проникающим на различные глубины потоком лучистой энергии и вертикальным турбулентным обменом (т. е. максимальное значение достигается в ночные часы, минимальное — в дневные [1]), то температура этого слоя будет удовлетворять следующему уравнению:

$$\frac{\partial t}{\partial \tau} = \frac{\partial}{\partial z} \left(k \frac{\partial t}{\partial z} \right) + \frac{1 - A}{c\rho} J(\tau) \sum_{m=1}^{v} J_m \beta_m e^{-\beta_m z},$$

$$t(0, \tau) = \varphi_1(\tau), \quad t(H, \tau) = \varphi_2(\tau), \quad t(z, 0) = \psi(z),$$
(1)

¹ Н. Л. Брюхатов, Н. Л. Пахомов, Р. Л. Потапова. «Физика твер-дого тела», 6, 2510, 1964.

121