# Beemhuk МОСКОВСКОГО УНИВЕРСИТЕТА

№ 5 — 1975

## . УДК 551.463

-----

## л. А. БУКИНА, П. В. МИРОНОВ, Н. К. ШЕЛКОВНИКОВ

#### О СТРУКТУРЕ КОЭФФИЦИЕНТА турбулентной вязкости В ОТКРЫТОМ ПОТОКЕ

Прямым методом измерены значения коэффициента турбулентной вязкости в лотке над шероховатым дном. Показано, что коэффициент обмена имеет три максимума: при п≊0,03, при п≊0,27, при п≊0,5.

Описание турбулентных течений с помощью уравнений Рейнольдса

$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = \overline{F_i} = -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial v_i} + \frac{\partial}{\partial x_i} \left( v \frac{\partial \overline{u_i}}{\partial \overline{x_j}} - \overline{u_i \cdot u_j} \right)$$
(1)

дает возможность установить закономерности движения жидкости в некоторых частных случаях, но не позволяет решить задачу в общем Здесь  $\overline{u}_i, \overline{u}_i, \overline{P}_i, \overline{F}_i$  — компоненты виде в силу незамкнутости (1). осредненных значений скорости потока, давления и объемной силы, -v -- коэффициент молекулярной вязкости,  $u_i$ ,  $u_j$  -- компоненты пульсационной составляющей скорости потока.

Незамкнутость системы уравнений (1) обусловлена наличием в них членов  $u_i u_j$ . Попытка замкнуть систему (1) путем осреднения не-линейных уравнений не дала желаемых результатов. Поэтому для решения (1) изыскиваются другие способы. Наиболее плодотворным из них является нахождение дополнительных связей между осредненными и пульсационными характеристиками потока с последующим выражением их друг через друга. Один из таких способов был предложен Буссинеском, согласно которому связь между компонентом тензора напря- $\rho u_1 u_3 u \frac{\partial u_1}{\partial u}$  может быть выражена следующим образом:

жения

$$-\rho \,\overline{u_1 \, u_3} = k \, \frac{\partial \overline{u_1}}{\partial y}, \tag{2}$$

где u<sub>1</sub>, u<sub>3</sub> — продольный и вертикальный компоненты скорости, *k* — коэффициент пропорциональности, введенный по аналогии с молекулярной вязкостью, и называется он коэффициентом турбулентной вязкости или коэффициентом турбулентного обмена. Коэффициент турбулентной вязкости

в отличие от v характеризует «динамические» свойства жидкости и не является физически постоянной. Значения коэффициента обмена могут изменяться как во времени, так и в пространстве, в зависимости от динамической структуры потока. Это в значительной степени усложняет установление связи между средними и пульсационными составляющими турбулентного потока и предполагает знание пространственно-временной структуры коэффициента турбулентной вязкости.

Однако фактические данные, полученные при исследовании структуры турбулентности в открытых потоках, носят незавершенный характер. Дело в том, что большая часть работ, обзор которых дан в [1]. выполнена в пограничных слоях жидкости, и лишь незначительная часть — во всей глубине потока. Причем детальное исследование пограничного слоя зачастую не сопровождалось столь тщательными исследованиями остальной части потока и наоборот. Поэтому экспериментальные данные о вертикальном профиле коэффициента турбулентной вязкости в открытых потоках до настоящего времени противоречивы. По данным Минского [2], коэффициент обмена имел максимум на глубине  $\eta = h/H = 0.303$  (H — глубина исследуемого потока, h — расстояние от дна). В [2] исследования проводились в лотке с гладким дном методом киносъемки в области 0,06≤η≤0,9. Детальное исследование придонного слоя в лотке с шероховатым дном было проведено Никитиным [1]. Измерения проводились методом киносъемки при различных шерохова-

тостях дна. По данным [1], K,  $\sqrt{\bar{u}'^2}$ ,  $\sqrt{\bar{w}'^2}$  имели максимальное значение в придонной области ( $\eta = 0,06$ ). Положения максимумов K и

 $V \overline{\dot{u}'^2}$  совпадали и при увеличении  $\bar{V}$  смещались в сторону уменьшения  $\eta$ . Положение максимума  $\sigma_w'$  во всех опытах наблюдалось на глубине 0°, 2 *H*.

Итак, если в [1] обнаружен максимум коэффициента обмена в придонной области, то в [2] этого максимума не было обнаружено. С другой стороны, в [2] коэффициент обмена имел максимум при  $\eta \approx 0,303$ , а в [1] этого максимума не было. В [3] при определении коэффициента обмена прямым и градиентным методом, так же как и в [2], было обнаружено наличие максимума K на глубине  $\eta \approx 0,3$ . Исследования в этом случае проводились термогидрометром в лотке над шероховатым дном. Наличие максимума коэффициента обмена в придонной области как в [2], так и в [3] обнаружено не было, так как измерения проводились в области  $\eta > 0,06$ .

С другой стороны, логарифмическому распределению скорости во всем турбулентном ядре равномерного потока в открытом русле соответствует распределение коэффициента турбулентной вязкости по квадратичной параболе с максимумом на середине глубины потока [4]:

$$K = \varkappa V_z z_0 \left( 1 - \frac{h}{H} \right),$$

где и — постоянная Кармана (и = 0,4),  $V_z = \sqrt{\frac{\tau}{\rho}}$  — динамическая скорость. Наличие максимума коэффициента обмена в средней части потока было получено экспериментально [5].

Результаты экспериментальных работ указывают на сложный характер вертикального профиля коэффициента турбулентной вязкости и на необходимость его дальнейшего исследования.

В данной работе определен вертикальный профиль коэффициента турбулентной вязкости в открытом потоке в области глубин 0,02 < η < 0,82. Исследования проводились в лотке размером 200×400× ×7000 мм при гладком и шероховатом дне. Шероховатость создавалась гравием со средним диаметром 6—8 мм. Измерения продольного компонента скорости и вариаций угла атаки датчика α' осуществлялись термогидрометром [3]. Средняя скорость потока составляла ~22 см/с.





Рис. 2. Изменение коэффициента турбулентной вязкости с глубиной

В качестве чувствительного элемента использовались платиновые нити диаметром d=20 мк и длиной l=5 мм. Тарировка термогидрометра осуществлялась «пульсационным» методом, описанным в [5], при этом чувствительность к изменениям продольного компонента скорости составляла 0,4 см/с, а к вариациям угла атаки датчика — 0,55 град/мм, или 0,0099 рад/мм. Постоянная времени всего измерительного комплекса не превышала 0,02 с.

Измерения пульсационных составляющих скорости проводились на расстоянии >20 H от входного устройства, последовательно на разных глубинах. При этом считалось, что осредненные характеристики потока за время эксперимента не изменялись.

По данным измерений U' и W' были вычислены среднеквадратичные значения этих величин  $\sigma_{u'} = \sqrt{\overline{u'}^2}$  и  $\sigma_{w'} = \sqrt{\overline{w'}^2}$  и построены графики распределения их по глубине (рис. 1). Из рис. 1 видно, что  $\sigma_{u'}$  имеет максимум на глубине  $\eta \cong 0,028$ ,  $\eta \cong 0,3$ , и  $\eta \cong 0,5$ . Вертикальный профиль  $\sigma_{w'}$  был близок к  $\sigma_{u'}=f(\eta)$  в области  $0,3 \le \eta \le 0,82$ , т. е. турбулентность была близкой к изотропной. При  $\eta < 0,3$  анизотропия возрастала и достигала максимума при  $\eta = 0,1$ . С увеличением  $\eta$  значения  $\sigma_{u'}$  и  $\sigma_{w'}$  несколько сближались. Однако максимального значения  $\sigma_{w'}$  в придонной области не наблюдалось.

Наличие максимальных значений у  $\sigma_{u'} = f(\eta)$  и  $\sigma_{w'} = f(\eta)$  может привести к экстремальным значениям и у коэффициента обмена. Действительно, если выразить значение коэффициента турбулентного обмена через дисперсии, т. е.  $K - \frac{\tau}{du/dy} = -\frac{\rho R \sigma_{u'} \sigma_{w'}}{du/dy}$ , то при отсутствии экстремума

у du/dy и у коэффициента корреляции R максимальные значения будут совпадать с максимумами  $\sigma_{u'}$  и  $\sigma_{w'}$ . При этом совпадение этих максимумов по глубине должно привести к увеличению максимального значения коэффициента обмена в этой области. При несовпадении максимумов  $\sigma_{u'}$  и  $\sigma_{w'}$  значение коэффициента K может иметь два максимума:  $\eta = (\sigma_{u'})_{\text{макс}}$  и  $\eta = (\sigma_{w'})_{\text{макс}}$ . Совпадение максимального значения коэффициента обмена по глубине с максимумов  $\sigma_{u'}$  обнаружено в опытах Никитина [1], о наличии второго максимума K, связанного с максимумом  $\sigma_{w'}$ . В [1] не сказано.

В настоящей работе исследуется вертикальный профиль коэффициента турбулентной вязкости. Измерения u', w'  $u \ du/dy$  были проведены на десяти уровнях в пределах 0,02≤η≤0,82. График изменения коэффициента обмена с глубиной представлен на рис. 2, а. На кривой k=f(h) обращает на себя внимание минимум k=0,07 П на глубине- $\eta = 0.024$ . При увеличении  $\eta$  значение коэффициента обмена возрастает и имеет незначительный максимум при п≈0,03. При этом же значении  $\eta$  наблюдается максимум  $\sigma_u'$ . В области значений  $0.05 \leqslant \eta \leqslant 0.5 \ k$  в среднем возрастает и достигает второго максимума  $k_{\text{макс}} = 1,29 \, \Pi$ . Этот максимум коэффициент обмена имел на глубине η≈0,5. При дальнейшем увеличении  $\eta$  значение k сначала резко спадает до k=0,2 П при- $\eta = 0.62$ , затем постепенно возрастает и на уровне  $\eta = 0.82$  составляет  $k = 0,27 \Pi$ . По предварительным данным кривая имела максимум (пунктир рис. 2, *a*). Как видно из рис. 2, *a*, в области η=0,3 максимума коэффициента обмена не оказалось. Участок кривой k = f(n) в области 0,15≦ n 0,31 лежит между двумя областями с разным изменением: коэффициента обмена с глубиной. На рис. 2, а этот участок аппроксимирован пунктирной кривой предполагаемого изменения  $k = f(\eta)$ . Такая аппроксимация вызвана тем, что в области  $0,15 \le \eta \le 0,31$  изменения k не производились в предположении, что максимум k находится в области <u>η</u>≅0,3.

Для выяснения положения максимума k в области  $\eta \simeq 0.3$  была. серия измерений. Согласно этим использована другая данным (рис. 2, б) максимум коэффициента обмена наблюдался на глубине- $\eta = 0,27$ , т. е. был смещен в сторону меньших глубин по сравнению с данными [2, 6]. Измерения в этом случае проводились также над шероховатым дном в области 0,1 $\leqslant$ η $\leqslant$ 0,67. Из рис. 2, б  $k=f(\eta)$  видно, что коэффициент обмена в этой области глубин имеет два максимума, первый — на глубине  $\eta = 0.31$  и второй в области  $\eta = 0.52$ . На рис. 2, в приведен профиль  $k=f(\eta)$  для области  $0,02 \le \eta \le 0.5$ , взятый из другой серии измерений. Как видно из этого рисунка, коэффициентобмена в области 0,02 <>

 0,02
 0,27
 возрастает и достигает максимума при
 n=0.27. При дальнейшем увеличении n коэффициент обмена сначала. уменьшается, а затем возрастает и достигает второго максимума на глубине  $\eta = 0.51$ . В отличие от профиля  $k = f(\eta)$ , представленного на рис. 2, а, в этом случае максимум коэффициента обмена в придонной области не был обнаружен из-за недостаточности данных наблюдений.

Следует отметить, что кривые рис. 2 получены в одних и тех же условиях, но при разных значениях средней скорости потока. Вероятно, поэтому они отличаются по величине, хотя удовлетворительно совпадают по форме (кривые 2,  $\delta$ ,  $\beta$ ).

Таким образом, из данных прямых измерений вертикального профиля коэффициента обмена можно представить его обобщенный профиль, наиболее важным в котором является наличие трех максимумов  $\eta \simeq 0.3$ ;  $\eta \simeq 0.5$ ;  $\eta \simeq 0.82$ . Причем наблюдалось некоторое смещение максимумов на глубинах  $\eta \simeq 0.3$  и  $\eta \simeq 0.5$ . По-видимому, это связано с изменением значений чисел Рейнольдса.

#### ЛИТЕРАТУРА

- Никитин И. К. Турбулентный русловой ноток. М., 1959.
  Минский Е. М. Основные характеристики турбулентного потока в длинных руслах. Тр. ЦАГИ, № 625, 1947.
- 3. Букина Л. А., Доброклонский С. В., Миронов П. В., Шелковни-ков Н. К. «Вестн. Моск. ун-та», физ., астрон., 16, № 2, 169, 1975. 4. Гришанин К. В. Динамика русловых потоков. М., 1969.

. .

- Б. Шелковников Н. К., Букина Л. А., Миронов П. В. «Вестн. Моск. ун-та», физ., астрон., 15, № 5, 1974.
  Шелковников Н. К., Букина Л. А., Миронов П. В. «Вестн. Моск. ун-та», физ., астрон., 15, 1974.

Поступила в редакцию 22.5 1974 г.

Кафедра физики моря и вод суши

Fight and the second s Second seco . \*

 $\mathbf{x} \in \mathbf{x}$ 

1.1.17 A. 1