Вестнике московского университета

№ 5 — 1975

Sur Sur

КРАТКИЕ СООБЩЕНИЯ

УДК 535.33:537.531

н. м. қабачниқ, и. п. сажина

ОБ ОДНОЙ ОСОБЕННОСТИ ЭМИССИОННЫХ СПЕКТРОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В ОБЛАСТИ МЯГКИХ РЕНТГЕНОВСКИХ ЛУЧЕЙ

В работах [1—4] были экспериментально изучены ультрамягкие рентгеновские эмиссионные спектры редкоземельных элементов от La⁵⁷ до Lu⁷¹, возбуждаемые электронным ударом. Исследованная область длин волн (60—160 Å) соответствует заполнению вакансии в 4*d*-оболочке редкоземельных элементов. Было обнаружено, что существуют две характерные области этих спектров, относительная интенсивность которых сильно меняется в зависимости от атомного номера элемента. В длинноволнов части спектра наблюдается интенсивная линия, которую авторы работ [1—4] относят к рентгеновскому переходу $N_{4,5} - O_{2,3}$, соответствующему заполнению 4*d*-вакансии электронами 5*p*-оболочки. Коротковолновая часть представляет собой широкую эмиссионную полосу с более или менее ярко выраженной структурой. Эта область соответствует переходам из незаполнению 4*f*-оболочки. Существенной особенностью изученных спектров является сильное уменьшение интенсивности 4*d* — 5*p*-лини с увеличением числа 4*f*-электронов в атомах редкоземельных элементов. Нанротив, вклад персходов 4*d* — 4*f* возрастает с ростом атомного номера.

Отвлекаясь от деталей структуры эмиссионных спектров, можно объяснить эту основную особенность на основе простейших атомных моделей.

При бомбардировке редкоземельных металлов электронами возможны два типа переходов. Во-первых, при образовании вакансии в 4d-оболочке электрон может покинуть атом, и тогда возникает ион с конфигурацией $4d^94f^n5p^6$ (мы указываем только оболочки, участвующие в обсуждаемых процессах). Во-вторых, 4d-электрон может перейти на свободное состояние 4f-оболочки, и тогда образуется ион $4d^94f^{n+1}5p^6$. Как показало экспериментальное изучение рентгеновских спектров поглощения [5], эти конфигурации образуют сложную систему уровней с большой энергетической протяженностью (~ 20 эВ). Последнее было объяснено в теоретических работах [6-8] сильным взаимодействием 4d-вакансии с незаполненной 4f-оболочкой. Состояиия обоих указанных типов близки по энергии и участвуют в формировании эмиссионных спектров редкоземельных элементов, что было установлено экспериментально [1-4]. Для окончательных выводов данной работы не очень существенно, рассматриваются ли оба типа переходов или только одна из конфигураций. Поэтому для определенности будем рассматривать состояния типа $4d^94f^{n+1}5p^6$.

Радиационный распад этих состояний составляют переходы 5*p*-электронов с образованием иона $4d^{10}4f^{n+1}5p^5$ в конечном состоянии и переходы 4f-электрона с образованием состояний $4d^{10}4f^{n}5p^6$. Рассмотрим абсолютные скорости дипольных электромагнитных переходов из всех возможных состояний начальной конфигурации $4d^94^{n+1}5p^6$ по двум указанным каналам:

$$w_{j} = \frac{4}{3} \alpha^{3} (\Delta E)^{3} \frac{1}{g(i)} S(i, j).$$
 (1)

Здесь α — константа тонкой структуры, ΔE — энергия ү-кванта, g(i) — статвес начального состояния (мы предполагаем статистическую заселенность уровней), S(i, j) — сила совокупности переходов по данному каналу. Все величины выражены в атомных единицах. Силу совокупности переходов, т. е. сумму сил линий по всем термам начальной и конечной конфигурации, можно выразить по известным правилам [9] через силу одночастичного перехода:

$$S(4d^{9}5p^{6}, 4d^{10}5p^{5}) = g(4f^{n})s(4d, 5p),$$

$$(4d^{9}4f^{n+1}, 4d^{10}4f^{n}) = g(4f^{n})\left(1 - \frac{n}{4l_{2} + 2}\right)s(4d, 4f).$$
(2)

Подставляя (2) в (1), учитывая статвес начальной конфигурации и выражая s(4d, 5p) и s(4d, 4f) через соответствующие радиальные интегралы, мы получим окончательные выражения:

S

$$w_{\rm I} = \frac{8}{15} \, \alpha^3 (\Delta E)^3 \, R_{4d5p}^2 \, ,$$

$$w_{\rm II} = \frac{2}{35} \, \alpha^3 \, (\Delta E)^3 \, (n+1) \, R_{4d4f}^2 \, . \tag{3}$$

Расчет радиальных интегралов был выполнен с помощью водородоподобных функций с эффективными зарядами. Параметры экранирования были взяты из работы [10]. Заметим, что хотя радиальные интегралы чувствительны к выбору эффективных зарядов (особенно R_{4d5p}), общая тенденция их изменения с изменением атомного номера сохраняется практически при любом разумном выборе параметров. Разность энергий ΔE выбиралась из следующих соображений. Средняя энергия конфигурации $4d^{10}4f^{n}5p^{6}$ считалась равной энергии основного состояния соответствующего редкоземельного элемента. Энергия конфигурации $4d^{9}4f^{n+1}5p^{6}$ была взята по экспериментальным данным о рентгеновских спектрах поглощения [5]. Для

. 2	57	58	59	69	61	62	63
— R _{4d5p}	0,160	0,158	0,155	0,152	0,149	0,146	0,142
$-R_{4d4f}$	0,766	0,751	0,732	0,713	0,695	0,678	0,661
$W_{\rm I} imes 10^5$	0,029	0,030	0,032	0,034	0,038	0,047	0,037
${\mathscr W}_{ m II} imes 10^5$	0,106	0,246	0,404	0,546	0,727	1,042	0,981

Скорости радиационных переходов для лантаноидов

Продолжение табл.

		·					
z	64	65	66	67	68	69	70
$-R_{4d5p}$	0,139	0,136	0,132	0,129	0,125	0,122	0,119
— R _{4d4f}	0,645	0,631	0,616	0,603	0,590	0,579	0,567
$W_I imes 10^5$	0,043	0,039	0,040	0,047	0,043	0,045	0,056
$W_{\rm II} imes 10^3$	1,240	1,418	1,621	1,820	2,192	2,596	2,923

Все величины даны в атомных единицах. Для скорости перехода 1 а. е. =0417 1017с⁻¹

603

4d¹⁰4fⁿ⁺¹5p⁵-конфигурации бралась энергия связи 5р-электрона [11]. Оказывается, что при таком выборе энергетический фактор в формулах (3) очень слабо влияет на относительную вероятность распада по двум каналам. Результаты расчетов приведены в табл.

Видно, что скорости переходов по второму каналу возрастают вдоль по ряду редкоземельных элементов значительно быстрее, чем по первому каналу. Очевидно, аналогичный вывод можно сделать и для другой начальной конфигурации $4d^94f^n5p^6$. Это, по-видимому, и приводит к наблюдаемому экспериментально подавлению 4d — 5p-переходов в эмиссионных рентгеновских спектрах.

В заключение отметим, что описанный подход лишь в самых грубых чертах характеризует особенности эмиссионных спектров редкоземельных элементов. Для более детального описания и сравнения с экспериментом необходимо наряду с лучшим описанием атома учитывать неравномерность заселения возбужденных уровней при электронном ударе и вероятность Оже-переходов, которые несомненно играют большую роль в этой области энергии, о чем свидетельствуют большие ширины линий в эмиссионных и абсорбционных спектрах.

Авторы благодарны Т. М. Зимкиной и В. В. Балашову за многократные полезные обсуждения.

ЛИТЕРАТУРА

- 1. Фомичев В. А., Грибовский С. А., Зимкина Т. М. Тезисы докладов на V Всесоюзной конференции по физике электронных и атомных столкновений.
- Ужгород, 1972, стр. 27. 2. Фомичев В. А., Грибовский С. А., Зимкина Т. М. «Физика твердого
- тела», 15, 201, 1973. 3. Фомичев В. А., Грибовский С. А., Зимкина Т. М. «Физика твердого тела», 15, 1312, 1973. 4. Зимкина Т. М., Фомичев В. А., Грибовский С. А. «Физика твердого
- тела», 15, 1620, 1973.
- 5. Зимкина Т. М., Фомичев В. А., Грибовский С. А., Жукова И. И. «Изв. АН СССР», сер. физ., 31, 874, 1967.
- 6. Dehmer J. L., Starace A. F. et al. «Phys. Rev. Lett.», 26, 1521, 1971. 7. Балашов В. В., Кабачник Н. М., Сажина И. П. «Оптика и спектроскопия», 33, 10, 1972.
- 8. Глембоцкий И. И., Каросене А. В. и др. «Литовский физический сборник», 12, 35, 1972; 12, 235, 1972.
 9. Левинсон И. Б., Никитин А. А. Руководство по теоретическому вычислению
- интенсивностей линий в атомных спектрах. Л., 1962.
- 10. Froese C., Fisher «Atomic Data», 4, 301, 1972.

11. Bearden J. A., Burr A. F. «Rev. Mod. Phys.», 39, 125, 1967.

Поступила в редакцию 28.5 1973 r.

НИИЯФ

УДК 535.376

Т. С. БЕССОНОВА, А. И. СОБКО

О НЕКОТОРЫХ ОСОБЕННОСТЯХ РАДИОЛЮМИНЕСЦЕНЦИИ РУБИНА И ЛЕЙКОСАПФИРА

Большинство авторов работ по радиолюминесценции лейкосапфира и рубина: [1-10] указывают на отсутствие разницы в спектрах фотолюминесценции и радиолюминесценции. Присутствующая в кристаллах примесь хрома дает излучение в *R*-линиях, возникающих в результате перехода ионов Cr³⁺ из возбужденного состояния в основное. Кроме того, вклад в люминесценцию могут давать и некоторые другие центры свечения.

Нами более подробно исследованы радиолюминесцентные свойства лейкосанфира и рубина: было проведено одновременное изучение спектрального состава и кинетики изменения выхода свечения указанных материалов при возбуждении быстрыми электронами. Для исключения нагрева образцов эксперименты велись с очень малыми интенсивностями электронов (мощность дозы ~ 0,3 рад с⁻¹ при энергии ~0,24 МэВ). Температура образцов при этом не отличалась от комнатной.