1. Грачев А. А. ДАН СССР, № 2, 269, 1950. 2. Колачевский Н. Н. Магнитные шумы. М., 1971.

Поступила в редакцию 24.10 1974 г.

Қафедра физики колебани**й**

УДК 621. 378:535.34

и. А. ГУДИЛИН, В. Е. МИЦУК, В. А. ЧЕРНИКОВ

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В СВЕТОВОЙ ИСКРЕ

В экспериментах по изучению поглощения лазерного излучения в плазме, образовавшейся в результате оптического пробоя в газах [1—4], определялась главным образом величина поглощенной энергии или оптическая толщина плазмы. При этом были обнаружены некоторые характерные особенности механизма поглощения лазерного излучения [5]; а именно: излучение в основном поглощает сравнительно тонкий слой плазмы (0,01+0,05 мм), распространяющийся со скоростью ~ 107 см/с

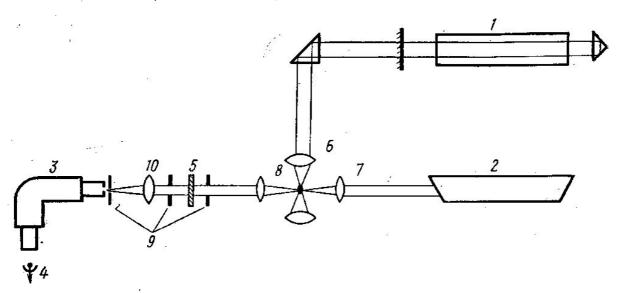
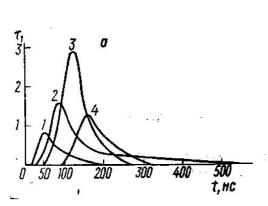


Рис. 1. Оптическая схема экспериментальной установки: 1 — неодимовый лазер, 2 — Не—Ne-лазер, 3 — монохроматор УM-2, 4 — фотоумножитель, 5 — поляроид, 6, 7 и 8 — фокусирующие линзы, 9 — диафрагмы, 10 — линза монохроматора


навстречу лазерному лучу. Как правило, в экспериментах по исследованию поглощения в лазерной искре оптическая толщина плазмы определялась в течение длительности лазерного импульса ($\tau \sim 50$ нс), создающего эту плазму [2, 4]. Однако представляет интерес исследование механизма поглощения излучения после окончания лазерного импульса, вызвавшего пробой газа, когда плазма находится в стадии распада. Для этого, очевидно, необходимо использовать зондирующие импульсы длительностью $\tau \sim 1 \div 5$ мкс или же ОКГ, работающий в непрерывном режиме.

В настоящей работе экспериментально исследовалось поглощение излучения Не—Ne-лазера в плазме, образованной в результате оптического пробоя воздуха при атмосферном давлении.

Для получения оптического пробоя использовался многомодовый неодимовый лазер (1) с модуляцией добротности (пиковая мощность ~ 30 МВт, длительность импульса ~ 50 нс, расходимость луча $\sim 8'$). Луч лазера фокусировался линзой (6) с F=27 мм, таким образом, площадь фокального пятна была $\sim 10^{-3}$ см².

В качестве источника зондирующего сигнала использовался Не—Ne-лазер типа ЛГ-36, излучение которого фокусировалось линзой (7) в область образования

светового пробоя, причем зондирующий луч пропускался через плазму в направлении, перпендикулярном оси искрового канала. Линза (8) позволяла получить параллельный пучок после прохождения излучения газового лазера через область

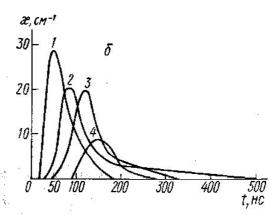


Рис. 2. Зависимость от времени оптической толщины плазмы (a) и коэффициента поглощения (б) 1-x=0; 2-x=1,06; 3-x=2,65; 4-x=3,18

пробоя. Сечение зондирующего пучка в области пробоя было $\sim 10^{-4}$ см², что обеснечивало хорошес пространственное разрешение. Для уменьшения собственного

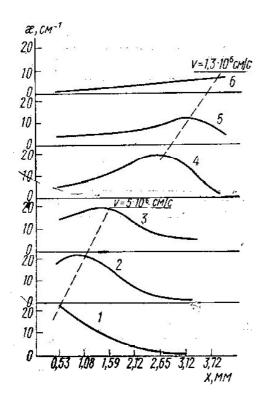


Рис. 3. Профили коэффициента поглощения вдоль оси искрового канала: $t-t=10,\ 2-t=20,\ 3-t=30,\ 4-t=50,\ 5-t=90,\ 6-t=130$ нс (t- время после окончания лазерного импульса, создающего плазму)

излучения плазмы использовалась система, состоящая из монохроматора УМ-2 (3), поляроида (5) и яда диа агм (9). Нен с едственно за выходной щелью монохроматора размещался фотоэлектронный умножитель типа ФЭУ-28 (4), сигнал с которого подавался на вход осциллографа СІ-11. Запуск осциллографа осуществлялся независимо от системы зондирующего луча. Линза (6) могла перемещаться вдоль направления лазерного луча, создающего плазму, что позволяло производить измерения в различных точках искрового канала. В отсутствие искры зондирующий сигнал калибровался по амплитуде, величина которой оставалась постоянной в течение экспери-

Таким образом, по отношению амплитуд кабровоч ого сиг ала и зо дирующего импульса при наличии пробоя можно было судить о величине оптической толщины плазмы в различные моменты времени

$$\tau_{\perp}(t) = \ln \frac{I_0}{I(t)}, \qquad (1)$$

$$\tau_{\perp} = \int_{0}^{t(t)} \varkappa(x) dx = \bar{\varkappa}l(t)$$

оптическая толщина плазмы.

На рис. 2, α приведены значения оптической толщины плазмы в направлении, перпендикулярном оси искрового канала (τ_{\perp}) в зависимости от времени для различных положений x вдоль оси канала. Видно, что наблюдается резкое воз-

растание оптической толщины плазмы в момент времени, соответствующий подходу поглощающего фронта плазмы к месту зондирования. Такое резкое возрастание происходит тем позже, чем дальше область зондирования находится от фокуса линзы (б). Таким образом, измеряя время запаздывания нарастания оптической толщины плазмы по отношению к началу пробоя, можно определить скорость движения фронта поглощения искрового канала. Полученные данные о движении фронта поглощения во времени дают следующие значения скорости: $v_{\Phi p} = 8 \cdot 10^6$ см/с до 50 нс, т. е. до момента окончания лазерного импульса, создающего пробой, что совпадает с результатами предыдущих экспериментов [1—4]. После 50 нс скорость движения фронта поглощения резко падает и становится равной $v_{\Phi p} = 10^6$ см/с к 100 нс после начала пробоя.

Если предположить, что коэффициент поглощения однороден поперек искры, то можно найти зависимость этого коэффициента от времени и положения вдоль оси канала (рис. 2, б). Необходимые для этого поперечные размеры искры l_{\perp} для каждого значения x и t рассчитываются по простой формуле

$$l_{\perp}(x, t) = d_{0}(x) + \frac{d_{k}(x) - d_{v}(x)}{t_{c} - \frac{x}{v_{\phi p}}} \left(t - \frac{x}{v_{\phi p}}\right),$$
 (2)

тде $d_0(x) = 2(r_0 + x \operatorname{tg} \varphi/2)$ — диаметр светового конуса $(r_0 - \operatorname{радиус} \varphi)$ фокального пятна, ϕ — угол фокусировки), $d_h(x)$ — максимальный диаметр искры для данного x, который определяется по интегральным фотографиям искры, $t_{\rm c}$ — длительность свечения искры.

Формула (2) предполагает, что поперечные размеры искры изменяются по ли-

нейному закону. Из представленных на рис. $2, \delta$ данных по зависимости $\kappa(t)$ для различных положений x можно нолучить распределение коэффициента поперечного поглощения плазмы по длине искры для различных моментов времени. Такое распределение показано на рис. 3 для $t=10\div130$ нс. При этом пространственное разрешение вдоль оси $\Delta x \sim 0.5$ мм и средняя ошибка при определении и не превышает 25%.

Из рис. З видно, что после окончания лазерного импульса в первые моменты времени область максимального поглощения находится вблизи фокуса, причем значение коэффициента поглощения достигает 25 см ⁻¹. В более поздние моменты эта область распространяется навстречу лазерному лучу. Скорость движения области максимального поглощения в первые 30 нс после окончания лазерного импульса остается практически постоянной и равна ~ 5·106 см/с. В дальнейшем скорость падает и после 50 нс становится равной 1,3·106 см/с, оставаясь постоянной до 130 нс после окончания лазерного импульса. Величина коэффициента поглощения в течение этого времени уменьшается до ~ 5 см $^{-1}$, причем спустя 130 нс после окончания лазерного импульса поглощение излучения в плазме происходит, практически однородно по всей длине искрового канала.

ЛИТЕРАТУРА

1. Meyerand R. G., Haught A. F. «Phys. Rev. Lett.», 13, 7, 1964.

2. Tomlinson R. G. «J. Appl. Phys.», 36, 868, 1965; «Phys. Rev. Lett.», 14, 489, 1965.

3. Wilson J. R. «J. Phis.», D3, 2005, 1970.

4. Гернитц Э., Мицук В. Е., Черников В. А. ЖТФ, **43**, 563, 1973.

5. Райзер Ю. П. «Успехи физических наук», 87, 29, 1965.

Поступила в редакцию 26.11 1974 г.

Кафедра электроники

УДК 539.122

А. М. ВОЛОЩЕНКО, Е. Н. ГУМИНОВ, Ю. Г. ПАВЛЕНКО

ТОРМОЗНОЙ ЭФФЕКТ НА МАГНИТНОМ МОМЕНТЕ В СИЛЬНОМ ПОЛЕ ИЗЛУЧЕНИЯ

Наличие интенсивного лазерного и микроволнового излучения позволяет наблюдать различные индуцированные процессы, нелинейные по полю волны. Одним из таких процессов является нелинейный тормозной эффект [1, 2]. В этих работах рассмотрение проводилось для случая рассеяния на кулоновском потенциале.

В настоящей заметке рассматривается нелинейный тормозной эффект при рассеянии нерелятивистских электронов на магнитном моменте (случай слабой волны рассмотрен в предыдущей работе авторов [3]). При этом как и в [1], поле волны (для определенности линейно поляризованной) будет учитываться в дипольном приближении, а взаимодействие с магнитным моментом в борновском приближении.