Веетник московского университета

№ 6 — 1975

УДК 669.018:538.632

А. Б. ГРАНОВСКИЙ

АНОМАЛЬНЫЙ ЭФФЕКТ ХОЛЛА НЕУПОРЯДОЧЕННЫХ СПЛАВОВ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

Приближение когерентного потенциала применяется для расчета аномального эффекта Холла (АЭХ) неупорядоченного силава при рассеянии намагниченных электронов полос проводимости «примесным» потенциалом рассеяния и потенциалом рассеяния, связанным с тепловыми колебаниями решетки. Константа АЭХ при температурах выше дебаевской может быть представлена линейно-квадратичной функцией температуры. Результаты расчета сопоставляются с экспериментальными данными.

Недавно [1] была построена теория остаточного аномального эффекта Холла неупорядоченных сплавов при произвольной концентрации компонентов сплава и при произвольной величине потенциала рассеяния, связанного с хаотическим расположением ионов компонентов сплава по узлам решетки (назовем этот потенциал «примесным»). В данной работе исследуется АЭХ в сплавах при конечной температуре. Учитывается рассеяние электронов проводимости как на «примесном» потенциале, так и на тепловых колебаниях решетки. Ранее подобная задача рассматривалась лишь для слабого «примесного» и электрон-фононного взаимодействия [2].

Аномальная холловская электропроводность

Гамильтониан, характеризующий зону проводимости бинарного неупорядоченного ферромагнитного сплава A_xB_y (y=1-x) в отсутствии спин-орбитального взаимодействия при конечных температурах, можно записать в следующем виде [1, 3]:

$$H^{(0)} = \sum_{\substack{m,m'\\m\neq m'}} t_{mm'} a_m^{+} a_{m'} + \sum_{m} (\Sigma_{mm}) a_m^{+} a_m + \sum_{m} (\varepsilon_{mm}^{m} + \theta_{mm}^{m} - \Sigma_{mm}) a_m^{+} a_m =$$

$$= \widetilde{H} + \sum_{m} V_{mm}^{m(0)} a_m^{+} a_m, \qquad (1)$$

где m и m' — номера узлов решетки; интеграл перескока в Ванье-представлении

$$t_{mm'} = N^{-1} \sum_{\mathbf{k}} \omega(\mathbf{k}) \exp[i\mathbf{k} (\mathbf{R}_m - \mathbf{R}_{m'})]$$

определяется законом дисперсии $\omega(\mathbf{k}) = \omega \mathbf{d}(\mathbf{k})$, ω — полуширина зоны, $-1 \leq \mathbf{d}(\mathbf{k}) \leq 1$. Решетка сплава содержит N-узлов и имеет элементарную ячейку кубической симметрии объемом Ω . Собственно энергетическая часть $\Sigma_{mm}(\mathbf{z})$ не зависит от номера узла и является функцией комплексной энергии. Электрон-фононное взаимодействие учитывается в гармоническом приближении

$$\theta_{mm}^{m} = \sum_{\mathbf{q}} \left(\gamma_{mmq}^{m} b_{\mathbf{q}} + \gamma_{mmq}^{n \bullet} b_{\mathbf{q}}^{+} \right), \tag{2}$$

где γ_{mmq}^m — матричный элемент электрон-фононного взаимодействия (γ^m , θ^m , b_q и $t_{mm'}$ считаются конфигурационно независящими),

$$V_{mm}^{(0)}(z) = \varepsilon_{mm}^{m} + \theta_{mm}^{m} - \Sigma_{mm}(z)$$
 (3)

матричные элементы оператора потенциала рассеяния на *т*-ном узле. Периодическое и непериодическое спин-орбитальное взаимодействие (непериодическое при конечных температурах определяется как «примесным» потенциалом рассеяния, так и потенциалом колебаний решетки), как показано в [1], приводит к изменению потенциала рассеяния. В данной работе для сокращения выкладок не разделяется действие периодического и непериодического спин-орбитального взаимодействия. Тогда в блоховском представлении суммарную добавку к потенциалу рассеяния в *п*-ной зоне на *т*-ном узле в линейном приближении по спин-орбитальному взаимодействию можно записать в следующем виде (см. (5) и (6) из [1]):

$$V_{n\mathbf{k},n\mathbf{k}'}^{m(1)} = siN^{-1} \exp\left[i\mathbf{R}_{m}(\mathbf{k}'-\mathbf{k})\right] \bar{\lambda}_{so_{n}}(\mathbf{v}+1) r_{0}^{2} \left[\mathbf{k} \times \mathbf{k}'\right] \frac{M_{\sigma}^{n}}{M_{0}^{n}} \frac{V_{mm}^{m(0)}}{\omega}, \quad (4)$$

где \mathbf{r}_0 — параметр решетки, λ_{son}^n — константа спин-орбитального взаимодействия, M_c^n — модуль проекции намагниченности n-ной зоны на направление полной намагниченности сплава M_c , M_0^n — спонтанная намагниченность n-ной зоны при T=0, v — параметр, пропорциональный отношению межзонного матричного элемента потенциала рассеяния к внутризонному: $s=\pm 1$ для зоны с индексом спина вдоль (против) полной намагниченности сплава.

Учитывая (1)—(4), запишем гамильтониан задачи

$$H = \widetilde{H} + \sum_{m} V_{mm}^{m(0)} a_{m}^{+} a_{m} + \sum_{m,m',m''} V_{m'm''}^{m(1)} a_{m'}^{+} a_{m''}.$$
 (5)

Так как мы будем рассматривать электропроводность намагниченных электронов, то индекс зоны эквивалентен индексу спина, и параметры зоны с индексом спина вдоль намагниченности $(s=1; \, \epsilon^{A(B)\, \uparrow})$ отличаются от параметров зоны с противоположным направлением спина $(s=-1; \, \epsilon^{A(B)\, \downarrow})$. Во всех выражениях, где это возможно (в том числе и в (5)), индекс спина, а также аргументы комплексной энергии собственно-энергетической части и функций Грина опущены.

В работе [1] подробно изложена методика расчета аномальной холловской электропроводности в рамках приближения когерентного потенциала. Следуя этой методике, легко получить самосогласованное уравнение для нахождения собственно-энергетической части сплава:

$$\left\langle \left\langle \frac{\varepsilon^{m} + \theta^{m} - \Sigma(z)}{1 - (\varepsilon^{m} + \theta^{m} - \Sigma(z)) F(z)} \right\rangle_{\Phi} \right\rangle = 0, \tag{6}$$

где < > означает конфигурационное усреднение, < > $_{\phi}$ — усреднение по позициям колеблющихся ионов, а

$$F(z) = \frac{N\Omega}{(2\pi)^3} \int d^3 \mathbf{k} \left[z - \omega(\mathbf{k}) - \Sigma(z) \right]^{-1}. \tag{7}$$

Исходя из формулы Кубо, предполагая применимость принципа Борна — Оппенгеймера к электрон-фононной системе сплава [3], проводя вычисления аналогично [1], ч. 3, получим выражение для $\sigma_{\alpha\beta}^{(1)\dagger}$ вклада в аномальную холловскую электропроводность зоны с индексом спина вдоль $(\sigma_{\alpha\beta}^{(1)\dagger})$ и против $(\sigma_{\alpha\beta}^{(1)\dagger})$ намагниченности сплава:

$$\sigma_{\alpha\beta}^{(1)\uparrow\downarrow} = \frac{e^{2}\hbar}{\pi\Omega} \int d\eta \left(-\frac{\partial f}{\partial \eta} \right) \frac{L^{\uparrow\downarrow}(\eta)}{\Delta^{2}(\eta)} \left[Im \Phi_{\alpha\alpha} \left(\eta - \Sigma \left(n - \right) \right) \right]^{2}. \tag{8}$$

Здесь

$$\Phi_{\alpha\alpha}(z) = \int d\xi N^{-1}(z-\xi)^{-1} \sum_{\mathbf{k}} v_{\alpha_{\mathbf{k}}} k_{\alpha} \delta(\xi-\omega(\mathbf{k})); \qquad (9)$$

$$\Delta(\eta) = Im\Sigma(\eta^{-}); \quad \eta^{\pm} = \eta \pm i0; \tag{10}$$

$$L^{\uparrow\downarrow}(\eta) = -i s r_0^2 \frac{\overline{\lambda}_{s0}}{\omega} \frac{M_c^{\uparrow\downarrow}}{M_0^{\uparrow\downarrow}} \left\langle \left\langle \frac{V_{mm}^{m(0)}(\eta^+) V_{mm}^{m(0)}(\eta^-)}{1 - V_{mm}^{m(0)}(\eta^+) F(\eta^+)} \right. \right.$$

$$-\frac{V_{mm}^{m(0)}(\eta^{+})V_{mm}^{m(0)}(\eta^{-})}{1-V_{mm}^{m(0)}(\eta^{-})F(\eta^{-})}\rangle_{\Phi}\rangle(\nu+1). \tag{11}$$

В работе [3] показано, что усреднение $\langle \ \rangle_{\Phi}$ проводится по правилу

$$\langle \psi(\theta^m) \rangle_{\phi} = \int d\xi P^m(\xi) \, \psi(\xi); \quad P^m(\xi) = (2\pi\alpha^m)^{-1/2} \exp\left[-\frac{\xi^2}{2\alpha^m}\right], \quad (12)$$

$$\alpha^{m} = |\gamma_{mmq}^{m}|^{2} \coth\left(\frac{1}{2} \frac{\hbar \omega_{\mathbf{q}}}{k_{0}T}\right), \tag{13}$$

 ω_q — закон дисперсии фононов, k_0 — постоянная Больцмана. Выражение (8) описывает асимметричное рассеяние намагниченных электронов проводимости при произвольных концентрациях компонентов сплава, произвольной величине как «примесного», так и электрон-фононного потенциала рассеяния и при произвольной температуре. $L(\eta)$ характеризует вероятность асимметричного рассеяния, $\Delta(\eta)$ имеет смысл обратного времени релаксации, а поведение функции $\Phi_{\alpha\alpha}(z)$ определяется законом дисперсии сплава. Ниже полученные выражения (8)—(13) исследуются для выяснения качественных закономерностей в концентрационной и температурной зависимости АЭХ.

Концентрационная и температурная зависимость аномальной холловской электропроводности сплава при высоких температурах

Так как температурная зависимость α^m определяется законом дисперсии фононов, то в области температур, где проявляется квантовый карактер колебаний решетки, последовательное построение теории АЭХ в настоящее время невозможно в силу неизученности фононных спектров сплавов. Поэтому мы рассмотрим случай высоких температур $T\gg T_D$ ($T_D=xT_D^A+yT_D^B$ — температура Дебая сплава), при этом α^m заведомо пропорционально T:

$$\alpha^m = g^m \frac{T}{T_D} \tag{14}$$

(константы $g^{A(B)}$ характеризуют величину электрон-фононного взаимодействия в чистых металлах и их величина различна для разных зон проводимости). Оценки для величины α^m показывают [3], что $\frac{\alpha}{\omega^2} < 1$.

Ниже рассматривается только предельный случай слабого электронфононного взаимодействия $\frac{\alpha}{\omega^2} \ll 1$. Тогда Σ и F можно разложить в

ряд по степеням $\frac{\alpha}{\omega^2}$, причем для вычисления АЭХ можно ограничиться линейными членами:

$$\Sigma = \Sigma^0 + \Sigma^\alpha; \quad F = F^0 + F^\alpha. \tag{15}$$

Здесь и ниже индекс 0 наверху без скобок означает, что соответствующие величины вычисляются при $T\!=\!0$. Тогда из (6) следует, что Σ^0 и Σ^α определяются следующими уравнениями:

$$\langle (\varepsilon^{m} - \Sigma^{0}) [1 - (\varepsilon^{m} - \Sigma^{0}) F^{0}]^{-1} \rangle = 0,$$

$$- \Sigma^{\alpha} \langle [1 - (\varepsilon^{m} - \Sigma^{0}) F^{0}]^{-2} \rangle + \langle \langle \theta^{m^{2}} F^{0} [1 - (\varepsilon^{m} - \Sigma^{0}) F^{0}]^{-3} \rangle_{\phi} \rangle +$$

$$+ F^{\alpha} \langle (\varepsilon^{m} - \Sigma^{0})^{2} [1 - (\varepsilon^{m} - \Sigma^{0}) F^{0}]^{-2} \rangle = 0.$$
(17)

Для произвольного закона дисперсии Σ^0 , Σ^α и $\Phi_{\alpha\alpha}$ (формулы (16), (17) и (9)) можно найти только машинным расчетом. Поэтому рассмотрим следующую модель сплава [3].

1. Закону дисперсии $\omega(k)$ соответствует полуэллиптическая форма кривой плотности состояний

$$\eta_0(E) = \frac{2}{\pi \omega^2} (\omega^2 - E^2)^{1/2}, \quad |E| \le \omega,$$

$$\eta_0(E) = 0, \quad |E| \ge \omega. \tag{18}$$

При этом функция Грина, соответствующая данной плотности состояний, согласно (1.36) из [1]

$$F_0(z) = \frac{2}{\omega^2} \left[z - (z^2 - \omega^2)^{1/2} \right]. \tag{19}$$

2. При данном законе дисперсии

$$N^{-1}\sum_{\mathbf{k}}v_{\alpha\mathbf{k}}k_{\alpha}\delta(\xi-\omega(\mathbf{k}))=D(\omega^{2}-\xi^{2})^{3/2}, \qquad (20)$$

где D — константа, характеризующая величину максимальной скорости в зоне. Примем $\omega = 1$.

В рамках рассматриваемой модели (18)—(20):

$$F(z) = F_0(z - \Sigma(z)); \quad F^0(z) = F_0(z - \Sigma^0(z)) : \Sigma(z) = z - \frac{1}{F(z)} - \frac{1}{4}F(z),$$
(21)

$$F^{\alpha} = \Sigma^{\alpha} \frac{4 (F^{0})^{2}}{4 - (F^{0})^{2}} = -2\Sigma^{\alpha} \left[1 - \frac{z - \Sigma^{0}}{\sqrt{(z - \Sigma^{0})^{2} - 1}} \right], \tag{22}$$

$$Im\Phi_{\alpha\alpha}(\eta - \Sigma(\eta^{-})) = D - \frac{\pi}{32} \{\pi^{3}\eta^{3}(\eta) + 3\pi\eta(\eta) [4 - (ReF(\eta))^{2}]\},$$
 (23)

где $\eta(\eta) = \pi^{-1} Im F(\eta^-)$ — плотность состояний сплава с учетом электрон-фононного взаимодействия.

Для нахождения $\sigma_{\alpha\beta}^{(1)}$ необходимо решить систему уравнений (16)—(17), (21)—(22) и найденные при этом Σ^0 ; Σ^α ; F^0 ; F^α использовать для расчета $\Delta(\eta):L(\eta)$; $Im\Phi_{\alpha\alpha}(\eta-\Sigma(\eta^-))$ (см. (10), (11) и (23)). Уравнение (16) решается аналитически только в ряде предельных случаев, рассматриваемых ниже. Обозначим $\epsilon^A-\epsilon^B=\delta$ (для определенности $\delta>0$), $\alpha=x\alpha^A+y\alpha^B$, $\rightleftharpoons=x\epsilon^A+y\epsilon^B$ и будем пренебрегать температурным размытием функции Ферми, т. е. $-\frac{\partial f}{\partial n}=\delta(E_F-\eta)$.

Слабое «примесное» рассеяние $(\delta \ll 1)$. Из уравнения (16) при $\delta \ll 1$ с точностью до членов порядка δ^2 следует

$$\Sigma^{0}(z) = \overline{\underline{\in}} + xy\delta^{2}F_{0}(z - \overline{\underline{\in}}).$$

Тогда, решая уравнение (17) и учитывая (22), получаем

$$\Sigma(z)=\overline{\rightleftharpoons}+(xy\delta^2+\overline{\alpha})\,F_0\,(z-\overline{\rightleftharpoons});\;F(z)=F^0\,(z)+4\overline{\alpha}\,(F^0\,(z))^3[4-(F^0(z))^3]^{-1}.$$
 Отсюда

$$\Delta_1(\eta) = Im\Sigma(\eta^-) = (xy\delta^2 + \alpha)\pi\eta^0(\eta), \tag{24}$$

$$\pi \eta^{0}(\eta) = Im F_{0}(\overline{\eta} - \overline{\epsilon}) = 2\sqrt{1 - (\eta - \overline{\epsilon})^{2}}; \tag{25}$$

$$\pi\eta(\eta) = \pi\eta^{0}(\mu) - 2\overline{\alpha}\pi\mu^{0}(\eta) \left[1 - \frac{(\eta - \overline{\epsilon})^{2}}{1 - (\eta - \overline{\epsilon})^{2}}\right]. \tag{26}$$

Рассчитывая величину $L\left(\eta\right)$ по формуле (11), представим ее в следующем виле:

$$L^{\uparrow\downarrow}(\eta) = L_{(\eta)}^{0\uparrow\downarrow} + L_{(\eta)}^{\alpha\uparrow\downarrow} + L_{(\eta)}^{\alpha^{2}\uparrow\downarrow} = -sr_{0}^{2}(v+1) \frac{M_{c}^{\uparrow\downarrow}}{M_{0}^{\uparrow\downarrow}} \bar{\lambda}_{s0} 2\pi \eta^{0}(\eta) \times \\ \times \left[B_{1}^{0}(\eta) + B_{1}^{\alpha}(\eta) + B_{1}^{\alpha^{2}}(\eta) \right], \tag{27}$$

$$B_1^0(\eta) = xy(y-x)\delta^3 + 4xy(1-3xy)\delta^4(\eta-\overline{\epsilon}) - 8x^2y^2\delta^4(\eta-\overline{\epsilon}),$$
(28)

$$B_1^{\alpha}(\eta) = 3xy\delta(\alpha^A - \alpha^B) + 24xy(y - x)(\alpha^A - \alpha^B)\delta^2(\eta - \overline{\epsilon}) + 8xy\overline{\alpha}\delta^2(\eta - \overline{\epsilon}),$$
(29)

$$B_1^{\alpha^s}(\eta) = 4\left[3\left(x\alpha^{A^s} + y\alpha^{B^s}\right) - 2\overline{\alpha^2}\right](\eta - \overline{\epsilon}), \tag{30}$$

 $L^0(\eta)$ — характеризует вероятность «примесного» рассеяния. Величина $L^{\alpha^2}(\eta)$ связана с рассеянием на фононах в сплаве, а $L^{\alpha}(\eta)$ описывает вероятность интерференционного рассеяния. Так как α имеет размерность квадрата энергии ($\alpha \ll 1$), а δ — размерность энергии, то в рассматриваемом случае $\delta \ll 1$ отброшены все члены порядка δ^5 ; $\alpha^2 \delta$; $\delta^3 \alpha$ и выше, при вычислении $\sigma_{\alpha\beta}^{(1)}$ с той же точностью:

$$Im\Phi_{\alpha\alpha}(\eta - \Sigma(\eta^{-})) = \frac{\pi^4}{8} D\left[\eta^0(\eta)\right]^3. \tag{31}$$

Подставляя (24) и (27)—(31) в (8), получаем следующее выражение для аномальной холловской электропроводности при $\delta \ll 1$:

$$\sigma_{\alpha\beta}^{(i)\uparrow\downarrow} = -D' \bar{s} \bar{\lambda}_{s0} \frac{M_c^{\uparrow\downarrow}}{M_0^{\uparrow\downarrow}} \left[\eta_{\uparrow\downarrow}^0 (E_F) \right]^{\dagger} \frac{B_1^{0\uparrow\downarrow} (E_F) + B_1^{\alpha\uparrow\downarrow} (E_F) + B_1^{\alpha^{s\uparrow\downarrow}} (E_F)}{[\Delta_1^{\uparrow\downarrow} (E_F)]^2}, \tag{32}$$

где

$$D' = \frac{e^2 h}{\pi \Omega} D^2 \frac{\pi^7}{32} (v + 1) r_0^2.$$

Сильное «примесное» рассеяние $(\delta\gg 1)$ (уровень Ферми в окрестности ϵ^A). В этом случае для z вблизи $\epsilon^A \mid (\epsilon^B - \Sigma^0(z)) \, F^0(z) \mid \gg 1$ и из (16) и (21) следует с точностью до членов порядка δ^{-1} :

$$\Sigma^{0}(z) = \varepsilon^{A} - y(F^{0}(z))^{-1}; \qquad F^{0}(z) = 2\left[z - \varepsilon^{A} - \sqrt{(z - \varepsilon^{A})^{2} - x}\right].$$

Подставляя Σ^0 и F^0 в уравнение (17), при ${\it a}{\it b}\ll 1$, учитывая (22), получаем

$$F^{\alpha}(z) = \frac{\alpha^{A}}{x} F^{0}(z) \frac{4 (F^{0}(z))^{2}}{4x - (F^{0}(z))^{2}}; \qquad \Sigma^{\alpha}(z) = \frac{\alpha^{A}}{x} F^{0}(z) \frac{4 - (F^{0}(z))^{2}}{4x - (F^{0}(z))^{2}}.$$
(33)

Следовательно:

$$\Delta_2(\eta) = \pi \eta^0(\eta) \left[\frac{y}{y_x} + \frac{\alpha^A}{x} \left(1 + \frac{2y}{[\pi \eta^0(\eta)]^2} \right) \right]; \tag{34}$$

$$\pi \eta^0(\eta) = 2 \sqrt{x - (\eta - \varepsilon^A)^2}; \tag{35}$$

$$\pi\eta(\eta) = \pi\eta^{0}(\eta) - \pi\eta^{0}(\eta) \frac{2a^{A}}{x} \left[1 - \frac{(\eta - \varepsilon^{A})^{2}}{x - (\eta - \varepsilon^{A})^{2}} \right]; \tag{36}$$

$$Im\Phi_{\alpha\alpha}(\eta - \Sigma(\eta^{-})) = D \frac{\pi^{4}}{8} [\eta^{0}(\eta)]^{3} \left[1 + \frac{3y}{[\pi\eta^{0}(\eta)]^{2}} - \frac{3y}{[\eta^{0}(\eta)]^{2}} - \frac{3y}{[\eta^{$$

$$-\frac{3\alpha^A}{2x}\left(1-\frac{2(\eta-\varepsilon^A)^2}{x-(\eta-\varepsilon^A)^2}\right); \qquad (37)$$

74

$$L^{\uparrow\downarrow}(\eta) = -sr_0^2(\nu+1) \frac{M_c^{\uparrow\downarrow}}{M_0^{\uparrow\downarrow}} \bar{\lambda}_{so} 2\pi \eta^0(\eta) [B_2^0 + B_2^{\alpha}(\eta) + B_2^{\alpha^2}(\eta)]; \quad (38)$$

$$B_2^0 = -\frac{y}{4x} \delta; \qquad B_2^{\alpha}(\eta) = -\frac{y\delta\alpha^A}{2x \left[x - (\eta - \varepsilon^A)^2\right]};$$

$$B_2^{\alpha^*}(\eta) = \left(\frac{\alpha^A}{x}\right)^2 4 (\eta - \varepsilon^A). \tag{39}$$

Так как при всех концентрациях, кроме $y\ll 1$, $B_2^{\alpha^3}\ll B_2^{\alpha}$, в выражении для $B_2^{\alpha^3}$ опущены члены линейные по y. Подставляя (34)—(39) в (8), получаем для аномальной холловской электропроводности при $\delta\gg 1$

$$\sigma_{\alpha\beta}^{(1)\uparrow\downarrow} = -D' s \overline{\lambda}_{so} \frac{M_c^{\uparrow\downarrow}}{M_0^{\uparrow\downarrow}} \left[\eta_{\uparrow\downarrow}^0 (E_F) \right]^7 \frac{B_3^{0\uparrow\downarrow} (E_F) + B_3^{\alpha\uparrow\downarrow} (E_F) + B_3^{\alpha\uparrow\uparrow} (E_F)}{\left[\Delta_3^{\uparrow\downarrow} (E_F) \right]^2}, \quad (40)$$

где

$$B_3^0(E_F) = -\frac{y}{4x} \delta \left(1 + \frac{3y}{[\pi \eta^0(E_F)]^2} \right),$$

$$B_3^{\alpha}(E_F) = \frac{y\alpha^{A\delta}}{4x^2} \left(1 + \frac{8(E_F - \epsilon^A)^2}{[\pi \eta^0(E_F)]^2} \right), \tag{41}$$

$$B_3^{\alpha^2}(E_F) = \left(\frac{\alpha^A}{x}\right)^2 4(E_F - \varepsilon^A), \qquad \Delta_3(E_F) = \pi \eta^0(E_F) \left[\frac{y}{4x} + \frac{\alpha^A}{x}\right]. \tag{42}$$

Причем в выражениях, связанных исключительно с рассеянием на фо-

нонах, отброшены члены, линейные по у.

Сильное примесное рассеяние ($\delta\gg1$). (Уровень Ферми в окрестности ϵ^B .) Данный случай эквивалентен рассмотренному выше при замене A на B и x на y во всех выражениях в формуле (40). Как следствие такой замены B_3^0 и B_3^α меняют знак. Чистый ферромагнитный металл A. В рассматривае-

Чистый ферромагнитный металл A. В рассматриваемом случае $\delta=0$, $\varepsilon^B=\varepsilon^A$ и $\overline{\Leftarrow}=\varepsilon^A$ легко получить аналогично случаю слабого «примесного» рассеяния:

$$\sigma_{\alpha\beta}^{(1)\uparrow\downarrow} = -D' s \overline{\lambda}_{s0} \frac{M_c^{\uparrow\downarrow}}{M_c^{\uparrow\downarrow}} \left[\eta_{\uparrow\downarrow}^0 \left(E_F \right) \right]^7 \frac{B_4^{\alpha^2\uparrow\downarrow} \left(E_F \right)}{\left[\Delta_{\uparrow\downarrow}^{\uparrow\downarrow} \left(E_F \right) \right]^2}, \tag{43}$$

где

$$\Delta_4(E_F) = \alpha^A \pi \eta^0(E_F); \qquad B_4^{\alpha^2}(E_F) = \alpha^{A^2} 4(E_F - \varepsilon^A). \tag{44}$$

В заключение приведем два хорошо известных выражения, необходимых для обсуждения полученных результатов. В наших обозначениях константа $A \ni X$

$$R = -\frac{\sigma_{\alpha\beta}^{(1)\uparrow} + \sigma_{\alpha\beta}^{(1)\downarrow}}{4\pi M_c} \rho^2, \tag{45}$$

где ρ — полное сопротивление сплава, а вклад в обычную электропроводность зоны проводимости $\sigma_{\alpha\alpha}^{\uparrow\downarrow} = \sigma^{\uparrow\uparrow}$ [3]:

$$\sigma^{\uparrow\downarrow} = \frac{\pi e^2 h^2}{12\Omega} D \left(\frac{\partial^2 \omega (\mathbf{k})}{\partial \mathbf{k}^2} \right)_{E_F}^{-1} \frac{\eta_{\uparrow\downarrow}^3 (E_F)}{\Delta^{\uparrow\downarrow} (E_F)} \left(1 + \frac{6\Delta^{\uparrow\downarrow} (E_F)}{\pi \eta_{\uparrow\downarrow} (E_F)} \right). \tag{46}$$

Во всех рассмотренных нами случаях второй частью в скобке в формуле (46) можно пренебречь и если $\eta(E_F) \approx \eta^{\mathfrak{g}}(E_F)$, что

$$\rho_{\uparrow\downarrow} = (\sigma^{\uparrow\downarrow})^{-1} = \frac{12\Omega}{\pi^2 e^2 \hbar^2 D} \left(\frac{\partial^2 \omega \left(\mathbf{k} \right)}{\partial \mathbf{k}^2} \right)_{E_F} \frac{\Delta^{\left(\uparrow\downarrow\right)} \left(E_F \right)}{\left[\eta_{\uparrow\downarrow}^0 \left(E_F \right) \right]^3}. \tag{47}$$

Обсуждение результатов

Из формул (32), (40), (43) и (45) следует, что константа АЭХ сплава, в котором носителями АЭХ являются одновременно электроны полос проводимости с индексом спина вдоль (s=+1) и против (s=-1) намагниченности, может быть записана в следующем виде:

$$R = \frac{D'}{4\pi} \frac{\overline{\lambda}_{s0}}{M_c} \left\{ \frac{M_c^{\uparrow}}{M_0^{\uparrow}} \left[\eta_{\uparrow}^0 \left(E_F \right) \right]^7 \frac{B_{\uparrow}^0 + B_{\uparrow}^{\alpha} + B_{\uparrow}^{\alpha^2}}{(\Delta^{\uparrow})^2} - \frac{M_c^{\downarrow}}{M_0^{\downarrow}} \left[\eta_{\downarrow}^0 \left(E_F \right) \right]^7 \frac{B_{\downarrow}^0 + B_{\downarrow}^{\alpha} + B_{\downarrow}^{\alpha^2}}{(\Delta^{\downarrow})^2} \right\} \rho^2, \tag{48}$$

причем концентрационная зависимость всех величин, входящих в (48), существенно отличается в случаях слабого и сильного «примесного» рассеяния, а температурная зависимость остается неизменной.

рассеяния, а температурная зависимость остается неизменной. При
$$T=0$$
 $R \to R^0 \sim \frac{B^0}{(\Delta^0)^2}$ (ρ^0)2, что согласуется с [1], а в случае

чистого металла (см. (43)) $R^A \sim \rho^2 \sim T^2$ (см. [4]). Следовательно, формула (48) правильно описывает предельные случаи остаточного АЭХ и АЭХ в чистых металлах, и правило Маттисена не применимо к кон-

станте АЭХ при любых концентрациях примесей.

Легко убедиться, что концентрационные зависимости B^0 и B^α при $\delta \ll 1$ (формулы (28)—(30)) совпадают с полученными соответствующими концентрационными зависимостями работы [2] (при $\rho^{-}\Delta$ и $\rho^0 \sim xy$). В то же время концентрационные зависимости B^{α^2} несколькоотличаются (последний член формулы (35) работы [2] и формула (30) данной работы). Это связано с тем, что член B^{α_2} , описывающий вероятность рассеяния электронов на фононах, определяется в работе [2] двухфононными процессами ($B_{\rm II}^{\alpha^2}$), а в данной — однофононными ($B_{\rm I}^{\alpha^2}$) (см. (2)). Так как двухфононные процессы не дают вклада в B^α [2], не меняют температурной зависимости, а также порядок величины B^{α^2} [4], то учет исключительно однофононных либо двухфононных процессов в формировании B^{α^2} не приводит к ошибкам в качественной теории. Тем не менее при построении количественной теории учет как $B_{\rm II}^{\alpha^2}$, так и $B_{\rm II}^{\alpha^2}$ необходим.

Вероятность интерференционного рассеяния определяется членом B^{α} . При $\delta \ll 1$ в силу (29) интерференция возникает в основном из-за различного характера колебаний ионов A и B ($B_1^{\alpha} \sim \alpha^A - \alpha^B$), при этом B^{α} порядка B^0 . При $\delta \gg 1$, B^{α} (см. (41)) возникает за счет перенормировки функции Грина под влиянием электрон-фононного взаимодействия (см. (36)—(39) и (41)—(42)) и $B^{\alpha} \ll B^0$.

Выделяя в B^{α} и B^{α^2} явно температурную зависимость (см. (14), $B^{\alpha} = C^g \frac{T}{T_D}$; $B^{\alpha^2} = C^{g^2} \left(\frac{T}{T_D}\right)^2$) и используя формулу (47), выражение (48) можно переписать в следующем эквивалентном виде:

$$R = \frac{D''\bar{\lambda}_{so}}{M_c} \left\{ \frac{M_c^{\uparrow}}{M_0^{\uparrow}} \eta_{\uparrow}^0 (E_F) \left[B_{\uparrow}^0 + C_{\uparrow}^g \frac{T}{T_D} + C_{\uparrow}^{gs} \left(\frac{T}{T_D} \right)^2 \right] \left(\frac{\rho}{\rho_{\uparrow}} \right)^2 - \frac{M_c^{\downarrow}}{M_0^{\downarrow}} \eta_{\downarrow}^0 (E_F) \left[B_{\downarrow}^0 + C_{\downarrow}^g \frac{T}{T_D} + C_{\downarrow}^{gs} \left(\frac{T}{T_D} \right)^2 \right] \left(\frac{\rho}{\rho_{\downarrow}} \right)^2 \right\}, \tag{49}$$

где через D'' обозначена константа, не зависящая от температуры и состава сплава. Начнем с выяснения температурной зависимости АЭХ. Предположим, что

$$\frac{\rho(T)}{\rho_{\uparrow\downarrow}(T)} = \frac{\rho(T_D)}{\rho_{\uparrow\downarrow}(T_D)}, \quad T \gg T_D, \tag{50}$$

и что смещением уровня Ферми под влиянием температурного размытия плотности состояний сплава (см. (20), (36)) в силу слабости электрон-фононного взаимодействия можно пренебречь. Тогда из (49) получаем

$$R = a + b \frac{T}{T_D} + c \left(\frac{T}{T_D}\right)^2, \qquad T \gg T_D, \tag{51}$$

где a, b и c не зависят от температуры. В работах [5, 6] показано, что линейно-квадратичная функция температуры хорошо описывает температурное поведение R в различных сплавах при $T < T_C$ (T_C — температура Кюри).

Необходимо сделать два замечания относительно формулы (51). Во-первых, сравнение формулы (51) для ферромагнитных сплавов при $T < T_C$ (о парамагнитной области см. ниже) возможно лишь для сплавов с $T_C \gg T_D$. Но в сплавах с высокими точками Кюри существенную роль могут играть процессы рассеяния на магнитных неоднородностях. Так как в настоящее время не построено теории АЭХ, учитывающей процессы рассеяния на магнитных неоднородностях и связанных с ними интерференционных процессов в сплавах при $T_D < T < T_C$, то совпадение температурной зависимости, выражаемой формулой (51), с экспериментальными данными в этом температурном интервале не может служить доказательством о несущественной роли указанных процессов рассеяния в формировании АЭХ. Во-вторых, величина α , хотя и пропорциональна, но не совпадает в точности с R^0 , как следует из (49)—(51).

В парамагнитной области формула (51) остается в силе, отсюда следует, что температурная зависимость в сплавах при $T > T_C$ существенно слабее, чем в чистых металлах выше T_c , и обнаружение температурной зависимости R при $T > T_C$ связано с рядом экспериментальных трудностей, основная из которых малая величина э.д.с. АЭХ в парамагнитной области. Температурную зависимость $A \ni X$ при $T > T_C$ при существующей точности измерений э. д. с. ($\sim 10^{-9} B$) можно наблюдать лишь в сплаве определенного концентрационного состава, при котором $T_C \gg T_D$, что дает возможность пренебречь рассеянием на магнитных неоднородностях при $T\gg T_D$ и $a\approx 0$, что приводит к более резкой температурной зависимости R этого сплава по сравнению с чистым ферромагнитным металлом. (В чистом ферромагнитном $\hat{T} > T_C$ $R \approx a^m + cT^2$, где первый член связан \hat{c} рассеянием на магнитных неоднородностях и порядка второго члена, связанного с рассеянием на фононах.) Так как $a \sim R^0$ (R^0 может изменить знак при некотором концентрационном составе сплава вне области малой концентрации одного из компонентов сплава [1]), то эти требования не являются противоречивыми и экспериментальное исследование сплавов, обладающих указанными свойствами, может служить непосредственной проверкой предлагаемой теории. Температурная зависимость R при $T > T_C$ наблюдалась в работе [7] в сплаве $N_{i_x}C_{u_y}$ при содержании N_i 61,87% $(T_{\rm C}\!=\!230\,{
m K}).$ Так как R^0 в этой работе не выделялся, то остается неясным, действительно ли в этом сплаве $a \approx 0$.

Так как рассмотренные нами предельные случаи слабого ($\delta \ll 1$) и сильного «примесного» рассеяния безусловно не соответствуют реальным значениям δ в сплавах переходных металлов, то к полученным в данной работе концентрационным зависимостям B^0 ; B^{α} ; B^{α} (см. (28)—(30) и (41)—(42), которым пропорциональны соответственно a, b и c, следует относиться с большей степенью осторожности при сравнении с экспериментальными данными.

Автор выражает глубокую признательность проф. Е. И. Кондорскому за руководство работой и обсуждение полученных результатов.

ЛИТЕРАТУРА

 Кондорский Е. И., Ведяев А. В., Грановский А. Б. Тезисы доклада на 18-м Всесоюзном совещании по физике низких температур. Киев, 1974; «Физика металлов и металловедение», 40, 1974.

2. Волошинский А. Н., Рыжакова Н. В. «Физика металлов и металловедение»,

34, 21, 1972.

3. Chen A., Weisz G., Sher A. Phys. Rev., B 5, 2897, 1972.

- 4. Грановский А. Б., Кондорский Е. И. «Физика металлов и металловедение»,
- 39, 718, 1975.
 5. Васильева Р. П., Черемушкина А. В. и др. «Физика металлов и металловедение», 38, 289, 1974.
 6. Кондорский Е. И., Черемушкина А. В. и др. «Физика твердого тела», **6**, 539, 1964.

7. Roy S. K., Subrahmanyam A. V. «Phys. Rev.», 177, 1133, 1965.

Поступила в редакцию 26.12 1974 г.

Кафедра магнетизма