Вестник московского университета

Nº 6 — 1975

КРАТКИЕ СООБЩЕНИЯ

УДК 539.216.22:535

А. И. АКИШИН, С. К. ГУЖОВА, В. И. ТИТОВ

ИЗМЕНЕНИЕ ОПТИЧЕСКОЙ ПЛОТНОСТИ ТОНКИХ ПЛЕНОК ДВУОКИСИ ТИТАНА ПРИ БОМБАРДИРОВКЕ ИОНАМИ МАЛЫХ ЭНЕРГИЙ

В настоящей работе спектральным методом исследовались эффекты воздействия понов водорода и кислорода малых энергий на пленки TiO₂. Методика получения ионов водорода и кислорода с энергией ~10 эВ и плотностью потока 10¹⁵ см⁻²с⁻¹ в плазме высокочастотного разряда описана в работах [1, 2]. Поскольку в экспериментальной установке в процессе бомбардировки ионами давление составляет 10⁻² мм рт. ст., взаимодействие ионов с поверхностью образца происходит при наличии на последней демпфирующего слоя адсорбированных атомов и молекул газа, в котором ионы с энергией 10 эВ испытывают упругое рассеяние и частично перезаряжаются. Спектральный метод дает возможность наблюдать изменения состояния поверхности и адсорбционного слоя образца в вакууме непосредственно после воздействия ионов и релаксацию этих изменений.

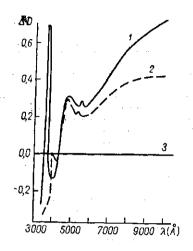
Экспериментальная установка включает в себя вакуумный пост с диффузионным масляным насосом и криосорбционными ловушками, газоразрядную трубку с кварцевыми окнами, в которой помещается подвижный образец, и оптическую систему для измерения спектров пропускания TiO₂. Предельный вакуум перед напуском газа в разрядный объем составляет 10-7 мм рт. ст., давление в процессе бомбардировки пленки ионами — 10-2 мм рт. ст. обеспечивается проточной системой подачи газа. Оптическая система регистрации спектральных коэффициентов пропускания состоит из двойного монохроматора ДМР-4 и фотоумножителей ФЭУ-39 и ФЭУ-22 для приема светового сигнала, проходящего через образец TiO₂ на кварцевой подложке и кварцевые окна разрядной трубки.

Пленки TiO₂ толщиной в несколько десятых долей микрона напылялись на кварцевую подложку в отдельной напылительной установке с предельным вакуумом 10^{-5} мм рт. ст. Образцы имеют контрольный участок, свободный от TiO₂, который можно с помощью подвижного крепления ставить под зондирующий световой пучок, что позволяет выделить эффект, связанный лишь с изменением поверхности TiO₂. Характер изменения спектров пропускания напыленных пленок [1] говорит об отсутствии существенных интерференционных эффектов. Авторы [3], использовавшие аналогичную технику приготовления пленок TiO₂, также не наблюдали в результате химической обработки влияния интерференционных экстремумов на изменение поглощения в слое TiO₂.

На рисунке приведены полученные нами спектральные характеристики, представляющие собой типичные изменения оптической плотности ΔD -пленки TiO_2 в диапазоне длин волн $\lambda=3000\div10\,000$ Å ($\Delta D=\Delta\,(kx)$, где k — коэффициент поглощения, x — толщина пленки). Ошибка определения ΔD не превышает 2%.

Как видим (кривая 1), после обработки пленки ${\rm TiO_2}$ нонами водорода появляется резкое увеличение поглощения в области $\lambda{\leqslant}3650$ Å, примыкающей к границе бальмеровской серии водорода. Этот континуум поглощения наблюдается после выключения разряда при водородном наполнении трубки при давлении 10^{-2} мм рт. ст. в течение ~ 15 мин, но при последующем напуске кислорода до 760 мм рт. ст. мгновенно исчезает.

Характер изменения оптической плотности пленки TiO2 после напуска кислорода позволяет отнести неустойчивую полосу поглощения при А≤3650 А к изменению состава адсорбционного газового слоя на поверхности пленки, образовавшегося в результате ее бомбардировки ионами водорода. В разряде адсорбционный слой атомарного водорода образуется вследствие большой степени диссоциации молекул водорода (до 90% [2]) и в процессе поверхностной рекомбинации Н+ с электронами, образующими отрицательный потенциал поверхности. Так как узкая полоса поглощения, ограниченная сверху длиной волны $\lambda=3650$ Å, может соответствовать фото-


ионизационному максимуму лишь взобужденного (n=2) атома водорода, следует предположить, что адсорбированный слой водорода находится в частично возбужденном состоянии (поглощение для нормального состояния атома Н наблюдается в далекой ультрафиолетовой области для $\lambda ≤ 970$ Å [4]). Длительное существование этого возбужденного слоя на поверхности после прекращения разряда при 10^{-2} мм рт. ст. указывает на возможность изомерного состояния водорода; его дальнейшее взаимодействие с кислородом может привести к гидратированию ${\rm TiO_2},$ а также давать вклад в поглощение при $\lambda{=}4200$ Å.

Этот незначительный максимум поглощения, проявляющийся на спектральной характеристике TiO₂, после выдерживания в течение 13 ч в атмосфере кислорода (кривая 2) мож-

но отнести к соединению ионов титана с молекулами перекиси водорода. Как показано в [5], воздействие ионизирующих излучений на гидратированные окислы металлов приводит к появлению на поверхности перекиси водорода, которая образует окращенные комплексы с пе-

реходными элементами. Длина волны максимума поглощения, соответствующего комплек-

су H₂O₂ и Ti⁺⁴, близка к 4200 Å [6]. Следующий отчетливый максимум поглощения в области 4800 А устойчив и наблюдается как на поверхности после прекращения бомбардировки ионами водорода, так и при последующем напуске кислорода 760 мм рт. ст. Незначительное падение интенсивности ΔD в области 4800 Å наступает только после даль-

Изменение оптической плотности пленки ТіО2 в результате последовательной обработки: $\frac{1}{1}$ — потоком ионов водорода $10^{18}~{\rm cm^{-2}}$ с энергией 10 эВ, 2 — молекулярным кислоро-дом при атмосферном давлении в течение 13 ч, 3 - по-TOKOM ионов кислорода 10^{18} см $^{-2}$ с энергией 10 эВ

нейшего выдерживания образца в кислороде в течение более половины суток (кривая 2). Аналогичная зависимость ΔD зарегистрирована и для небольшого максимума поглощения в области 5500 А. Эти два максимума изменения оптической плотности пленки TiO2 предположительно можно отнести к характерному окрашиванию в результате хемосорбционных процессов, в которых участвуют органические примеси (неизбежные в первую очередь из-за присутствия следов паров масла при получении пленок в напылительной установке). Наличие углеводородов в составе пленки TiO2 безусловно может привести при ее обработке ионами Н к образованию на поверхности комплексов карбониевых ионов, спектр поглощения которых и определяет окрашивание двускиси титана в видимой области [7]. Впервые типичные для спектров карбониевых ионов и их комплексов две устойчивые полосы поглощения в видимой области спектра с расстоянием между максимумами

~1000 Å наблюдались в протоносодержащих средах [8].
Наиболее сильное увеличение поглощения пленки TiO₂ при бомбардировке ионами водорода наблюдается при $\lambda = 6000 \div 10\,000\,$ Å (кривая 1). Этот максимум ΔD устойчиво сохраняется при прекращении бомбардировки в водороде при 10^{-2} мм рт. ст., а под воздействием молекулярного кислорода постепенно ослабевает (кривая 2). Поглощение для $\lambda = 600 \div 10\,000$ Å, по-видимому, характеризует изменение состояния поверхности TiO_2 в результите более сильных, чем простая физическая сорбция водорода, хемосорбционных связей H^+ с TiO_2 , приводящих к нарушению стехиометрии окисла в связи с восстановлением TiO_2 ионами водорода. Аналогичный максимум поглоще-

ния наблюдался в [9] при химическом восстановлении двуокиси титана. После выдерживания в атмосфере кислорода пленка TiO₂ была подвергнута бомбардировке ионами кислорода с энергией 10 эВ интегральным потоком 10^{18} см $^{-2}$. При этом все изменения оптической плотности, показанные на рисунке, были сняты, и спектр пропускания TiO2 вернулся к исходному, существующему до первичной обработки пленки ионами H^+ , что соответствует уровню $\Delta D = 0$ (кривая 3). Таким образом, все предположенные механизмы изменения оптической плотности пленки TiO2 с органическими примесями под влиянием H+ в. ч. плазмы полностью обратимы при взаимодействии с ионизованным кислородом, что соответствует их физико-хими-

ческой природе.

Сильная зависимость максимумов оптической плотности пленок TiO₂ от обработки в восстановительной (плаэма водорода) и окислительной (плаэма кислорода) среде также позволяет отнести эти максимумы не к интерференционным явлениям в слое, а к результату гетерогенных реакций при взаимодействии низкотемпературной плазмы с поверхностью ТіО2.

ЛИТЕРАТУРА

- 1. Акишин А. И., Блюдов Е. В. и др. «Журнал прикладной спектроскопии»,
- 12, вып. 1, 13, 1970. 2. Акишин А. И., Блюдов Е. В. и др. «Вестн. Моск. ун-та», физ., астрон., 13, № 6, 634, 1972. 3. Травина Т. С., Мухин Ю. А. «Изв. вузов», сер. физ., № 6, 74, 1966. 4. Фриш С. Э. Оптические спектры атомов. М.—Л., 1963.

- 5. Нанобашвили Е. М., Бах Н. А. Сборник работ по радиационной химии. М.,
- 1955, стр. 123. 6. Бабко А. К., Пилипенко А. Т. В сб.: «Фотометрический анализ». М., 1968, стр. 251.
- 7. Пименов Ю. Д., Холмогоров В. Е. «Вестн. Ленингр. ун-та», вып. 2. № 10.
- 8. Китова А. И., Варшавский Я. М. ДАН, 135, 1395, 1960.

9. Cronemeyer. «Phys. Rev.», 82, 975, 1951.

Поступила в редакцию 3.6 1974 г.

ФРИИН

(527.226 + 537.311.33) : 538

К. П. МИТРОФАНОВ, П. Б. ФАБРИЧНЫЙ, Е. В. ЛАМЫКИН, А. М. БАБЕШКИН, Л. П. ФЕФИЛАТЬЕВ

СВЕРХТОНКАЯ СТРУКТУРА МЕССБАУЭРОВСКИХ CHEKTPOB 119Sn4+ B Cr₂O₃

Мёссбауэровские исследования на примесных ядрах 119 Sn, введенных в антиферромагнитные окислы (α -Fe $_2$ O $_3$ [1—4], MnO [5]), показали наличие значительных эффективных магнитных полей ($H_{9\Phi\Phi}$) на ядрах диамагнитных ионов Sn $^{4+}$.

В настоящей работе приводятся результаты, полученные для 119 Sп4+ в антиферромагнитном окисле Cr_2O_3 , имеющем как и α - Fe_2O_3 структуру корунда (R3c), отличающемся, однако, от α - Fe_2O_3 меньшей величиной эффективного магнитного момента катионов матрицы $(\mu_{Fe_2O_3}=5,92\,\mu_{\rm B},\,\mu_{Cr_2O_3}=3,73\,\mu_{\rm B}).$ Образцы Cr_2O_3 были приготовлены путем отжига на воздухе свежеосажденной гидроокиси Cr (III), содержащей примесь Sn^{4+} (88% обогащения по ^{119}Sn). Образо-

вание кристаллической окиси хрома было установлено рентгенографически. Наличие сверхтонкой структуры у ¹¹⁹Sn⁴⁺, вошедшего в кристаллическую решетку антиферромагнитного окисла, позволяет оценить максимальную растворимость диамагнитной примеси олова по моменту появления нерасщепленной центральной линии в низкотемпературных спектрах $^{119}{\rm Sn}$ с увеличением концентрации олова. Для ${\rm Cr}_2{\rm O}_3$ растворимость Sn^{4+} была ~ 1 ат.%.

Большая часть исследований была выполнена на крупнокристаллическом образце Cr_2O_3 , отожженном при 1000°С ($\overline{d}_{perr}>500$ Å), содержащем 0,5 ат.% Sn^{4+} .

Мёссбауэровские спектры получены на спектрометре электродинамического типа с постоянным ускорением. Источником служил Ва 119SnO₃ при комнатной температуре. В качестве детектора использовался резонансный счетчик [6].

 ${\rm Cr_2O_3}$ характеризуется температурой Нееля $T_N\!=\!307~{\rm K}$ [7]. В соответствии с этим значением спектр ${}^{10}{\rm Sn^4}+$ при $T_{{\tt M3M}}\!=\!373~{\rm K}$ не имеет магнитной сверхтонкой структуры. Охлаждение поглотителя до температуры ниже T_N приводит к зеемановскому рас-щеплению ядерных уровней основного и первого возбужденного состояния $^{119}{\rm Sn}$ (рис. 1). Основные нараметры мёссбауэровских спектров приведены в таблице. Наб-