образом, все предположенные механизмы изменения оптической плотности пленки TiO2 с органическими примесями под влиянием Н+ в. ч. плазмы полностью обратимы при взаимодействии с ионизованным кислородом, что соответствует их физико-химической природе.

Сильная зависимость максимумов оптической плотности пленок TiO₂ от обработки в восстановительной (плазма водорода) и окислительной (плазма кислорода) среде также позволяет отнести эти максимумы не к интерференционным явлениям в слое, а к результату гетерогенных реакций при взаимодействии низкотемпературной плазмы с поверхностью TiO₂.

ЛИТЕРАТУРА

- 1. Акишин А. И., Блюдов Е. В. и др. «Журнал прикладной спектроскопни», 12, вып. 1, 13, 1970. 2. Акишин А. И., Блюдов Е. В. и др. «Вестн. Моск. ун-та», физ., астрон., 13,
- № 6, 634, 1972. 3. Травина Т. С., Мухин Ю. А. «Изв. вузов», сер. физ., № 6, 74, 1966. 4. Фриш С. Э. Оптические спектры атомов. М.—Л., 1963.

- 5. Нанобашвили Е. М., Бах Н. А. Сборник работ по радиационной химии. М.,
- 1955, стр. 123. 6. Бабко А. К., Пилипенко А. Т. В сб.: «Фотометрический анализ». М., 1968, стр. 251.
- 7. Пименов Ю. Д., Холмогоров В. Е. «Вести. Ленингр. ун-та», вып. 2. № 10. 21, 1966.
- 8. Китова А. И., Варшавский Я. М. ДАН, 135, 1395, 1960.
- 9. Cronemeyer. «Phys. Rev.», 82, 975, 1951.

Поступила в редакцию 3.6 1974 г.

ниияф

(527.226 + 537.311.33) : 538

К. П. МИТРОФАНОВ, П. Б. ФАБРИЧНЫЙ, Е. В. ЛАМЫКИН, А. М. БАБЕШКИН, Л. П. ФЕФИЛАТЬЕВ

СВЕРХТОНКАЯ СТРУКТУРА МЕССБАУЭРОВСКИХ CILEKTPOB ¹¹⁹Sn⁴⁺ B Cr₂O₃

Мёссбауэровские исследования на примесных ядрах ¹¹⁹Sn, введенных в антиферромагнитные окислы (α -Fe₂O₃ [1—4], MnO [5]), показали наличие значительных эффективных магнитных полей ($H_{\mathfrak{s}\Phi\Phi}$) на ядрах диамагнитных ионов Sn⁴⁺.

В настоящей работе приводятся результаты, полученные для ¹¹⁹Sn⁴⁺ в антиферромагнитном окисле Сг₂O₃, имеющем как и α -Fe₂O₃ структуру корунда (R3c), отличающемся, однако, от α -Fe₂O₃ меньшей величиной эффективного магнитного момента катионов матрицы ($\mu_{\text{Fe}_2\text{O}_3} = ,5,92\,\mu_{\text{E}}, \,\mu_{\text{Cr}_2\text{O}_3} = 3,73\,\mu_{\text{E}}$). Образцы Сг₂O₃ были приготовлены путем отжига на воздухе свежеосажденной гидроокиси Сг (III), содержащей примесь Sn⁴⁺ (88% обогащения по ¹¹⁹Sn). Образо-

вание кристаллической окиси хрома было установлено рентгенографически. Наличие сверхтонкой структуры у ¹¹⁹Sn⁴⁺, вошедшего в кристаллическую решетку

антиферромагнитного окисла, позволяет оценить максимальную растворимость диа-магнитной примеси олова по моменту появления нерасщепленной центральной линии в низкотемпературных спектрах ¹¹⁹Sn с увеличением концентрации олова. Для Cr₂O₃ растворимость Sn⁴⁺ была ~1 ат.%.

Большая часть исследований была выполнена на крупнокристаллическом образце Cr₂O₃, отожженном при 1000°С ($\overline{d_{pehrr}}$ >500 Å), содержащем 0,5 ат.% Sn⁴⁺.

Мёссбауэровские спектры получены на спектрометре электродинамического типа с постоянным ускорением. Источником служил Ва ¹¹⁹SnO₃ при комнатной температуре. В качестве детектора использовался резонансный счетчик [6].

 Cr_2O_3 характеризуется температурой Нееля $T_N = 307$ К [7]. В соответствии с этим значением спектр ¹¹⁹Sn⁴⁺ при $T_{x3M} = 373$ К не имеет магнитной сверхтонкой структуры. Охлаждение поглотителя до температуры ниже T_N приводит к зеемановскому рас-щеплению ядерных уровней основного и первого возбужденного состояния ¹¹⁹Sn (рис. 1). Основные нараметры мёссбауэровских спектров приведены в таблице. Наб-

Параметры мёссбауэровских спектров ¹¹⁹Sn⁴⁺ в Сг₂О₃

Т °Қ	Химический сдвиг, -мм/с ¹	Квадрупольное вза- имодействие, мм/с ²	Н _{эфф} , кэ
77	0,20	0,50	137
	(0,12)	(0,90)	(100)
373	0,16	0,60	0
	(0,06)	(1,4)	(0)

¹ Относительно ВаЅпО₃ при 295 К.

² Приведена разность расстояний между компонентами 1,2 и 5,6 магнитного мультиплета при $T < T_N$ и удвоенное расстояние между компонентами дублета при $T > T_N$.

Рис. 1. Экспериментальные кривые мёссбауэровских спектров ¹¹⁹Sn⁴⁺ в Cr₂O₃: $a - T = 77^{\circ}$, $\delta - T = 293^{\circ}$ и e = T = 373 К

Рис. 2. Температурное изменение $H_{\vartheta \Phi \Phi}$ на ядрах ¹¹⁹Sn⁴⁺ (сплошная кривая — функция Бриллюэна для S=3,2). Точками отмечены экспериментальные значения

людающаяся при температуре образца 77 К картина сверхтонкого расщепления соответствует магнитному полю на ядрах 119 Sn⁴⁺ $H_{p\Phi\Phi}(77^\circ) = 137 \pm 1$ кэ.

Отметим, что в случае высокодисперсного образца Cr_2O_3 ($\overline{d}_{pentr} < 100$ Å) при $T_{R3M} = 77$ K был получен плохо разрешенный спектр, характеризующийся значительно меньшей величиной $H_{3\Phi\Phi}(77^\circ) \approx 100$ кэ. Наблюдаемое понижение значения поля качественно согласуется с теоретическими данными понижения величины T_N в высокодисперсных системах.

Сверхтонкая структура, соответствующая $H_{\theta \oplus \phi}$ (77°) ~ 100 кэ, проявляется также и в измерениях с крупнокристаллическими образцами. Его интенсивность по отношению к основному сигналу составляет ~ 20%. Параметры этого спектра даны в таблице в скобках. Возможно, что помимо остаточного влияния размеров кристаллитов дополнительная структура обусловлена взаимодействиями типа примесь — примесь, ослабляющими величину магнитного поля на ядрах атомов, у которых один из магнитоактивных ионов хрома в ближайшей координационной сфере замещен ионом олова.

Зависимость величины $H_{3\phi\phi}$ от температуры находится в хорошем согласии с ходом функции Бриллюэна для значения $S=^{3}/_{2}$ при $T_{N}=306$ К.

Экстраполяция экспериментальной кривой $H_{3\phi\phi}(T)$ в область низких температур дает значение $H_{3\phi\phi}(0) = 138,5\pm1$ кэ, что несколько больше, чем соответствующая величина для примесных атомов олова в матрице а-Fe₂O₃. Из этого следует, что магнитное поле на ядрах примесных атомов олова в двух исследованных соединениях со структурой корунда не коррелирует, как можно было бы предположить с величиной магнитных ионов матрицы.

Известно, что в связи с различиями электронного строения 3d-оболочки ионов Сг³⁺ и Fe³⁺ ($t_g^0 t_{2g}^3$ н $t_g^2 t_{2g}^3$ соответственно), Сг₂О₃ и α-Fe₂O₃ при одинаковой кристаллографической структуре имеют несколько различный характер магнитного упорядочения [8]. Поэтому прямое сравнение значений Нафф (0) в этих соединениях в значительной степени условно.

Отсутствие данных о влиянии сверхобменного взаимодействия различных типов на эффективное магнитное поле на ядрах диамагнитных примесей затрудняет количественный анализ поведения $H_{a \Phi \Phi}$ в соединениях типа корунда, где реализуется одновременно несколько типов обменных взаимодействий, отличающихся величиной угла связи катион-анион-катион. Однако сопоставление результатов наших измере-ний с данными работы [9], где наблюдалось значительное уменьшение магнитного поля на ядрах примесных атомов олова при переходе от матрицы LaFeO₃ к матрице LaCrO₃, позволяет предположить, что в соединениях со структурой корунда катион-анион-катнонное сверхобменное взаимодействие, в котором принимают участие l_g -электроны магнитных катионов, играет второстепенную роль. Основным, по-види-мому, является катион-катнонное взаимодействие [10], обусловленное перекрытием волновых функций t_{2g} -электронов.

Высокотемпературный мёссбауэровский спектр ¹¹⁹Sn⁴⁺ (рис. 2) позволяет оценить постоянную квадрупольного взаимодействия, e²qQ для ¹¹⁹Sn⁴⁺ в Cr₂O₃. Величина $e^2 q Q = 0.6 \pm 0.1$ мм/с оказалась близкой соответствующему значению, найденному для ¹¹⁹Sn⁴⁺ в α-Fe₂O₃ [3].

ЛИТЕРАТУРА

- 1. Фабричный П. Б., Бабешкин А. М. и др. «Физика твердого тела», 12, 2032, 1970.
- 2. Fabritchnyi P. B., Babechkin A. M., Nesmeianov A. N. «Phys. Chem. Sol.», 32, 1701, 1971.
- 3. Fabritchnyi P. B., Lamykin E. V. et al. «Sol. State Comm.», 11, 343, 1971. 4. Ламыкин Е. В., Фабричный П. Б. и др. «Физика твердого тела», 15, 874,
- 1973.
- 5. Фабричный П. Б., Ламыкин Е. В. и др. «Физика твердого тела», 13, 3417. 1971.
- 6. Плотникова М. В., Митрофанов К. П., Шпинель В. С. «Письма в

ЖЭТФ», 3, 321, 1966.
7. Мс Биіге Т. R., Scoti Е. Т., Grannis F. H. «Phys. Rev.», 102, 1000, 1956.
8. Изюмов Ю. А., Озеров Р. П. Магнитная нейтронография. М., 1966.
9. Боков В. А., Попов Г. В. «Физика твердого тела», 14, 104, 1972.
10. Гуденаф Д. Магнетизм и химическая связь. М., 1968.

Поступила в редакцию 27.6 1974 r.

ниияф

Кафедра радиохимии химфака

УДК 539.144

Н. Н. КОЛЕСНИКОВ, С. М. ЧЕРНОВ

$d - \Lambda - d - CHCTEMA$

В настоящей работе, используя экспериментальные данные о взаимодействии A-частицы с дейтроном, исследовалась связанная квазимолекулярная система d = A = dс параллельно ориентированными спинами дейтронов. Расчет проводился в рамках трехтельной модели варнационным методом с простейшей двухпараметрической пробной функцией. Аналогичный метод использовался Далитцем и Даунсом для расчета ³_АН [1]. Потенциал А-d-взаимодействия заимствован из работы [2]. Энергия связи системы d-A-d рассчитана при различных предположениях о величине параметров, характеризующих d-d-взаимодействие. При каждом наборе параметров рассчитаны s-фазы упругого d-d-рассеяния при низких энергиях, которые сопоставляются с экспериментом.

Известно, что Л-N-взаимодействие сильнее в синглетном состоянии [1], поэтому энергия связи квазимолекулярной системы $d - \Lambda - d$ должна быть максимальна при параллельной ориентации спинов дейтронов и противоположной им ориентации спина А частицы. В соответствии с теоретическими соображениями (действие принципа Пау-