BecMhuk

МОСКОВСКОГО УНИВЕРСИТЕТА

№ 1—1976

УДК 321.373.5.029

В. В. КАРПОВ, И. И. МИНАКОВА, А. Г. ФЕДОСЕЕВ

УЧЕТ ПРОЛЕТНОЙ НЕЛИНЕЙНОСТИ В ГЕНЕРАТОРЕ НА ЛАВИННО-ПРОЛЕТНОМ ДИОДЕ И В КЛИСТРОННОМ ГЕНЕРАТОРЕ

Рассмотрено влияние зависимости пролетного угла от приложенного напряжения на характеристики автономного и синхронного режимов автогенераторов с запаздыванием. Для генераторов на ЈПД и огражательном клистроне рассчитаны амплитудные кривые и условия устойчивости. Получены зависимости ширины полосы синхронизации и увеличения амплитуды в синхронном режиме от пролетного угла и глубины его самомодуляции при параметрическом воздействии.

Особенности параметрической синхронизации при наличии нелинейного контура и запаздывания в обратной связи были рассмотрены в [1]. Там же было оценено увеличение полосы синхронизации при пролетном угле 60—70°. В [2] произведена оценка максимального приращения амплитуды при параметрическом воздействии над амплитудой автономного режима и рассмотрены энергетические соотношения в автоколебательной системе с запаздыванием при слабом параметрическом воздействии, показывающее значительное увеличение мощности сигнала на выходе за счет более полного использования источника питания при больших углах пролета, что особенно существенно для лавинно-пролетных диодов (ЛПД), диодов Ганна и т. п. В этих работах, как и в большинстве работ по автогенераторам с c запаздыванием, учитывался средний пролетный угол [3]. Для твердотельных генераторов при большой амплитуде переменного напряжения, близкой к постоянному смещению, может быть существенной зависимость ширины запорного слоя *р*-*n*-перехода от приложенного напряжения, приводящая к изменению с напряжением пролетных углов носителей (пролетная нелинейность) и к модуляции емкости p-n-перехода (параметрическая нелинейность).

Изменение с напряжением угла пролета носителей может вызываться также изменением их скорости дрейфа, поэтому пролетная нелинейность может играть заметную роль и в тех случаях, когда ширина запорного слоя *p*—*n*-перехода практически не зависит от приложенного напряжения, как, например, в диодах, работающих в режиме прокола. Пролетная и параметрическая нелинейность представляют собой интегральный эффект, который мы будем в дальнейшем называть самомодуляцией пролетного угла. Следует отметить, что самомодуляция пролетного угла может проявляться и у отража-

24

тельного клистрона, в основном вследствие изменения с напряжением скорости дрейфа электронов. Учет зависимости пролетного угла от амплитуды переменного напряжения [4] позволил объяснить асимметрию областей генерации клистрона, в частности получить гистерезис на краю области. Расчет зависимости пролетного угла от амплитуды напряжения для плавного *p*—*n*-перехода проведен в [5].

В общем случае зависимость величины пролетного угла θ от переменного напряжения *и* может быть записана в виде

$$\theta = \sum_{k=0}^{N} \theta_k u^k. \tag{1}$$

Для автогенератора с линейным контуром или резонатором, имеющим коэффициент затухания б при наличии запаздывания т в обратной связи, уравнение движения при параметрическом воздействии на реактивный параметр двойной частотой может быть записано в виде

$$\ddot{x} + 2\delta x + 2S(x_{\tau})\dot{x}_{\tau} + \omega_0^2(1 + m\cos 2pt)x = 0.$$
⁽²⁾

Рассмотрим одночастотный режим квазилинейного квазиконсервативного автогенератора при малой глубине модуляции параметра *m*. В приближении малого сигнала ограничимся кубической апроксимацией характеристики активного элемента, полагая

$$S(x_{\tau}) = -\delta_1 + \delta_2 x_{\tau}^2.$$

При указанных условиях в полосе параметрической синхронизации и при расстройках, мало превышающих расстройки, соответствующие границам полосы, движение в системе может быть представлено в виде

$$x = A\sin\left(pt - \varphi\right) \equiv A\sin\psi. \tag{3}$$

В первом приближении, ограничиваясь линейным членом в (1),

$$\theta = \theta_0 + \theta_1 x \quad (\theta = \theta_0 \quad \text{при} \quad \tau = \text{const}) \tag{4}$$

получим

$$c_{\tau} = A\sin\left(\psi - \theta\right) = A\sin\left(\psi - \theta_0 - \theta_1 x\right).$$
(5)

При $\theta_1 A \ll \frac{\pi}{8}$ можно провести разложение (5) в ряд Тейлора и учесть только линейный по $\theta_1 x$ член:

$$x_{\tau} = A\sin(\psi - \theta_0) - A\cos(\psi - \theta_0) \cdot \theta_1 x =$$

= $A\sin(\psi - \theta_0) - \frac{1}{2}\theta_1 A^2 [\sin\theta_0 + \sin(2\psi - \theta_0)].$ (6)

В (3), (5) и (6) А и ф — зависящие от времени медленно меняющиеся величины.

Уравнения установления могут быть записаны в виде

$$\frac{dA}{dt} = -\delta A - \overline{S}_{1}(A) A \cos \theta_{e} + \frac{m\omega_{0}^{2}}{4\rho} A \sin 2\varphi, \qquad (7)$$

$$\frac{d\varphi}{dt} = \frac{p^2 - \omega_0^2}{2p} - \overline{S}_2(A) \sin \theta_0 + \frac{m\omega_0^2}{4p} \cos 2\varphi, \qquad (8)$$

где

$$\bar{S}_1(A) = -\delta_1 + \frac{1}{4}\delta_2 A^2 + \frac{1}{8}\delta_2 \theta_1^2 A^4 (1 + 2\sin^2\theta_0), \qquad (9)$$

25

$$\overline{S}_{2}(A) = -\delta_{1} + \frac{1}{4}\delta_{2}A^{2} - \frac{1}{8}\delta_{2}\theta_{1}^{2}A^{4}(1-2\sin^{2}\theta_{0}).$$
(10)

Как видно из (7) и (9), учет параметрической и пролетной нелинейности приводит к увеличению жесткости предельного цикла за счет последнего члена в (9) и (10). Из (8) и (10) следует, что при само-модуляции пролетного угла появляется добавка в реактивную составляющую тока, знак которой меняется при $\theta_0 = 45^\circ$.

В стационарном синхронном режиме из (7) и (8) можно получить уравнение амплитудной кривой:

$$\Delta = \pm \sqrt{\left(\frac{m\omega_0^2}{4p}\right)^2 - [\tilde{S}_1(A) - \bar{S}_1(A_{0\tau})]^2 \cos^2\theta_0} + \bar{S}_2(A) \sin\theta_0, \quad (11)$$

где $\Delta \simeq p - \omega_0$.

11 A.

Амплитуда автономного режима:

$$A_{0\tau}^{2} = \frac{\sqrt{1 + 8\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0}) (\delta_{1}\cos\theta_{0} - \delta)/(\delta_{2}\cdot\cos\theta_{0}) - 1}}{\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0})}$$
(12)

При $\theta_1 = 0$ из (7) и (9):

$$A_{0\tau}^2 = 4 \left(\delta_1 - \delta/\cos\theta_0 \right) / \delta_2 \tag{12'}$$

Частота автономного режима и скелетная линия определяется из (10) и (11):

$$\Delta_{0\tau} = -\left(\delta \operatorname{tg} \theta_0 + \frac{1}{4} \,\delta_2 \theta_1^2 \,A_{0\tau}^2 \sin \theta_0\right). \tag{13}$$

Как следует из (11) и (12), при наличии самомодуляции при опти-мальных значениях θ_0 ($\theta_0 = 2 \pi n$; n = 0, 1, 2, ...) амплитуды $A_{0\tau}$ и A существенно зависят от θ_1 . При $\theta_1 \neq 0$ в автономном режиме есть внутреннее автопараметрическое воздействие на величину как активной, так и реактивной составляющей тока. Изменение реактивной составляющей тока (10) происходит как за счет изменения амплитуды автоколебаний, так и за счет появления дополнительной составляющей, пропорциональной θ_1^2 и меняющей знак при изменении θ_0 при $\theta_0 = 45^\circ$.

Запишем амплитудное условие устойчивости:

$$A_{1}^{2} \ge \frac{-3 \pm \sqrt{9 + 40 \cdot \theta_{1}^{2} (1 + 2\sin^{2}\theta_{0}) (\delta_{1}\cos\theta_{0} - \delta)/(\delta_{2}\cos\theta_{0})}}{5\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0})} \ge \frac{3}{5} A_{0\tau}^{2}$$
(14)

и фазовое (условие вертикальных касательных):

$$\Delta \leqslant [\overline{S}_1(A) - \overline{S}_1(A_{0\tau})] \frac{1 + 2\sin^2\theta_0}{2\sin^2\theta_0 - 1} \operatorname{ctg} \theta_0 + \overline{S}_2(A) \sin \theta_0.$$
(15)

Граница области фазовой неустойчивости на плоскости Δ, A² проходит через точки вертикальных касательных амплитудной кривой (11) и через центр амплитудной кривой с координатами $\Delta_{0\tau}$, $A_{0\tau}^2$. В случае оптимального запаздывания (15) дает просто прямую линию $A^2 = A_{0\tau}^2$

Максимальное приращение амплитуды, вызванное слабым параметрическим воздействием, можно оценить из (11). Для A=A_{max}

$$[\overline{S}_{1}(A_{\max}) - \overline{S}_{1}(A_{0\tau})] \cos \theta_{0} = -\frac{m\omega_{0}}{4}.$$
 (16)

·· · .

Поскольку $S_1(A)$ при наличии самомодуляции пролетного угла более сильно изменяется при отклонении амплитуды автоколебаний от равновесного значения A_0^{τ} , чем в отсутствие самомодуляции, то

$$||_{\max} ||_{\theta_1 = 0} > A_{\max} |_{\theta_1 \neq 0.}$$

$$(17)$$

Расчет стационарных амплитуд и частот автономного и неавтономного режимов по формулам (11), (12'), (12) и (13), а также условий устойчивости (14), (15) был проведен на ЭВМ для типичных

а а ет в от ажательного клистрона и ЛПД. Клистронный генератор представляет собой типичную систему с мягким предельным циклом [6]. Параметры клистрона [7] при рас-

Параметры клистрона [7] при расчете: $\delta/\omega_0 = 0,008$; $\delta_1/\omega_0 = 0,024$; $\delta_2/\omega_0 = 0,003^{-1}/s^2$.

ЛПД имеет постоянный угол пролета $\theta_0 = 60 \div 85^\circ$, определяемый его конструктивными особенностями и материалами, из которых он изготовлен. Для сравнения с клистронным генератором при расчетах имелась в виду возможность моделирования системы с параметрами ЛП[¬] и регулируе ым углом пролета. ГЛПД в типичных режимах — система с жестким предельным циклом.

Параметры ЛПД [8] для расчета: $\delta/\omega_0 = 0,015$; $\delta_1/\omega_0 = 0,15$; $\delta_2/\omega_0 = -0,54^{-1}/s^2$.

На рис. 1 приведены амплитудные и частотные кривые для автономных колебаний клистрона и системы с параметрами ГЛПД. Видно, что для обоих типов приборов самомодуляция пролетного угла вызывает уменьшение амплитуды колебаний и более резкое отклонение ω от ω₀ по мере увеличения θ₀. Генератор на ЛПД, в отличие от клистронного генератора, является системой с жестким предельным циклом, поэтому самомодуляция пролетного угла мало сказывается на амплитуде и частоте при пролетных углах меньше 50-60°. Резкое ограничение A^2/A_0^2 наблюдается у ЛПД при углах 60-85°, соответствующих реальным рабочим режимам ГЛПД. На рис. 2 приведены амплитудные кривые в области параметрической синхронизации при $\theta_0 = 0$, т. е. при оптимальном пролетном угле. При одной и той же глубине модуляции параметра m/4=0,02 отклик клистрона на внешнее воздействие при $\theta_1 = 0$ существенно сильнее, чем у системы с параметрами ГЛПД. Свойство жесткости предельного цикла у ГЛПД наглядно иллюстрируется этими кривыми. При $\theta_1 \neq 0$ в обоих случаях происходит искажение формы эллипса за счет уплощения верхней устойчивой его части. Нижняя часть эллипса растягивается, но незначительно, в приведенном примере этим растяжением можно пренебречь. Наиболее сильно влияет наличие самомодуляции на амплитуду в системе с мягким предельным циклом — клистроне. Одновременно с искажением верхней части эллипса происходит снижение его большой оси по оси A^2 в соответствии с зависимостью $A_{0\tau}$ от θ_1 (см. рис. 1). При $\theta_0 \neq 0$ происходит заметное изменение частоты гене-

Рис. 1. Амплитуды и частоты автономных режимов: клистронный генератор $\xi = \Delta/\omega_0$ (вверху) и модель ГЛПД $\xi = 5 \Delta/\omega_0$ (вкизу). 1 — $\theta_1 = 0, 1' - \theta_1 = 0, 07; 2 - \theta_1 = 0, 2' \theta_1 = 0, 3$

ратора. На рис. З показаны две скелетные кривые для ГЛПД: одна для $\theta_0 > 45^\circ$, другая для $\theta_0 < 45^\circ$. Как видно из (10) и (13), скелетные кривые представляют собой отрезки парабол, отличие которых от прямых определяет нелинейная по A^2 добавка в реактивную составляющую тока, пропорциональная θ_1^2 , равная нулю при $\theta_0 = 45^\circ$ и имеющая разные знаки при $\theta_0 > 45^\circ$ и $\theta_0 < 45^\circ$.

Рис. 2. Амплитудные кривые $m/4=0,02; \quad \theta_0=0.$ Клистрон: 1 — $\theta_1=0, 1'$ — $\theta_1=0,07.$ Модель ГЛПД: 2 — $\theta_1=0, 2'$ — $\theta_1=0,3 \quad \Delta_0=0,02 \; \omega_0$

Рис. 3. Скелетные линии (модель ГЛПД): $I = \theta_0 = 75, 2 = \theta_0 = 15, 3 = \theta_0 = 45^\circ, \theta_1 = 0.3; I' = \theta_0 = 75, 2' = \theta_0 = 15, 3' = \theta_0 = 45^\circ, \theta_1 = 0.$ Δ_0 — ширина полосы синхронизации

Как показано в [2], при больших пролетных углах предельный цикл сильно смягчается, что приводит к усилению отклика системы на слабое параметрическое воздействие. Расчет, проведенный для $\theta_0 = 60$ и $\theta_0 = 75^\circ$, показывает, что самомодуляция пролетного угла при больших θ_0 заметно снижает максимальное значение амплитуды даже при малых $\theta_1 \neq 0$. Особенно сильное влияние наблюдается в системах с мягким предельным циклом. Однако, несмотря на ограничивающее действие эффекта самомодуляции, превышение амплитуды автоколебаний, вызванное сравнительно малым параметрическим воздействием ($\approx m/4 = 0.05$), над амплитудой автономного режима, может быть сравнимо с амплитудой автономного режима в системе без запаздывания в обратной связи (A_0) и тем более с амплитудой автономного режима в системе с запаздыванием ($A_{0\tau}$).

Очень важно также превышение амплитуды неавтономного режима при θ₀≠0 над амплитудой неавтономного режима при оптимальном запаздывании:

$$\beta = \frac{A_{\max}^2}{A_{\max}^2} \Big|_{\substack{\theta_0 \neq 0 \\ \theta_0 = 0}}.$$

Не учитывая самомодуляцию пролетного угла ($\theta_1 = 0$), легко получить

$$\beta = 1 + \frac{m/4 - \delta}{m/4 + |\delta_0|} \left(\frac{1}{\cos \theta_0} - 1 \right), \tag{18}$$

где $\delta_0 = \delta - \delta_1$.

Отсюда видно, что при $m/4 > \delta$ с увеличением угла θ_0 растет отклик системы на параметрическое воздействие. При воздействии перекрываются потери в системе и при этом $\beta > 1$. При $m/4 < \delta$ отклик системы на параметрическое воздействие, увеличивающийся с увеличением θ_0 , лишь частично перекрывает потери в системе, и $\beta < 1$.

При учете самомодуляции пролетного угла величина β выразится как

$$\beta = \frac{\begin{vmatrix} A_{\max}^2 \\ \theta_0 \neq 0 \\ \theta_1 \neq 0 \end{vmatrix}}{\begin{vmatrix} \theta_0 = 0 \\ \theta_1 = 0 \end{vmatrix}}$$

Кроме того, полезно ввести величину β₁:

$$\beta_{1} = \frac{\begin{vmatrix} A_{\max}^{2} \\ \theta_{0} \neq 0 \\ \theta_{1} \neq 0 \end{vmatrix}}{\begin{vmatrix} A_{\max}^{2} \\ \theta_{0} = 0 \\ \theta_{1} \neq 0 \end{vmatrix}}$$

Обе эти величины зависят от параметров следующим образом:

$$\beta = \frac{\delta_{2} \left[\sqrt{1 + 8\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0}) (m/4 - \delta + \delta_{1} \cos\theta_{0})/(\delta_{2} \cos\theta_{0}) - 1} \right]}{4\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0}) (m/4 - \delta + \delta_{1})}, \quad (19)$$

$$\beta_{1} = \frac{\sqrt{1 + 8\theta_{1}^{2} (1 + 2\sin^{2}\theta_{0}) (m/4 - \delta + \delta_{1} \cos\theta_{0})/(\delta_{2} \cos\theta_{0}) - 1}}{(1 + 2\sin^{2}\theta_{0}) \left[\sqrt{1 + 8\theta_{1}^{2} (m/4 - \delta + \delta_{1})/\delta_{2}} - 1 \right]}. \quad (20)$$

Здесь налицо два противоборствующих фактора: увеличение отклика системы на параметрическое воздействие с ростом θ_0 и ограничение амплитуды за счет самомодуляции, также существенно увеличивающееся по мере увеличения θ_0 . Последнее особенно существенно для систем с мягким предельным циклом.

Тип генератора	θ _о , град	β			β1	
		0==1 ^θ	€ 1==0, 1	θ1=0.2	θ ₁ ==0,i	θ1=0,2
Отражательный клистрон	60	1,64	0,854	0,508	1,13	0,985
Г ЛПД	75	1,54	1,48	1,40	1,50	1,42

В табл. приведен пример численной оценки β и β₁ для вышеупомянутых параметров клистронного генератора и ГЛПД при m/4=0,05. На рис. 4 приведены амплитудные кривые при различных θ₀ для клистронного генератора (а) и модели ГЛПД (б). При этом коэффициент самомодуляции θ₁ имеет постоянную величину. Для больших углов θ₀ приведены для сравнения кривые для θ₁=0. Как видно из этих графиков, ширина полосы синхронизации и пределы изменения амплитуды в области устойчивой синхронизации существенно возрастают по мере увеличения угла θ₀ даже при наличии самомодуляции

Рис. 4. Амплитудные кривые клистронного генератора (a) $\alpha_n = 4 - \theta_0 = 60, 5 - \theta_0 = 60^\circ; \theta_i = 0$. Амплитудные кривые модели ГЛПД $5 - \theta_0 = 75$

пролетного угла. Границы устойчивости для малых θ_0 определяются фазовым условием, а по мере увеличения θ_0 начинает сказываться и амплитудное условие. Под шириной полосы синхронизации здесь понимается ширина полосы удержания синхронного режима, так как раскрыв области синхронизации в первом приближении не зависит от наличия запаздывания [2].

Таким образом, учет самомодуляции пролетного угла в первом приближении приводит к изменению амплитудно-частотной характеристики системы в автономном режиме, наиболее существенном при больших во. Это изменение связано с нелинейным и автопараметрическим воздействием самомодуляции, особенно сильно сказывающимся у систем с мягким предельным циклом. Отклик системы на внешнее параметрическое воздействие при самомодуляции снижается. Однако при этом основной эффект увеличения отклика при увеличении запаздывания преобладает в системах как с мягким, так и с жестким предельным циклом.

ЛИТЕРАТУРА

- 1. Бухари А. Х. Ш., Минакова И. И., Федосеев А. Г. «Вестн. Моск. ун-та», физ., астрон., 13, № 4, 1972.
- 2. Минакова И. И., Федосеев А. Г. «Радиотехника и электроника», 18, № 11. 1973.

- 3. Гвоздовер С. Д. Теория электронных приборов СВЧ. М.—Л., 1956. 4. Хохлов Р. В. ЖТФ, 25, 14, 1955. 4. Тагер А. С., Вальд-Перлов В. М. Лавинно-пролетные диоды и их применение в технике СВЧ. М., 1968.
- 6. Мигулин В. В., Коваленко А. С. «Вестн. Моск. ун-та», физ., астрон., 11, № 3, 1970.
- 7. Степанова Н. В. Синхронизация отражательного клистрона. Канд. дисс., 1959.
- 8. B. B. van Jperen, H. Tjassens. «Microwave j.», 15, 11, 29, 1972.

Поступила в редакцию 24.5 1974 г.

Кафедра физики колебаний