УДК 551.510.534

П. П. Павлов А. Х. Хргиан

НЕКОТОРЫЕ ОЦЕНКИ МЕСТНЫХ ИЗМЕНЕНИЙ АТМОСФЕРНОГО ОЗОНА В ЗАГРЯЗНЕННОЙ АТМОСФЕРЕ

Рассмотрена величина и форма области убывания озона в атмосфере, вызванного загрязнением атмосферы окислами азота. Показано, что местный эффект загрязнения незначителен и кратковременен, но-что в глобальном аспекте окислы азота играют роль длительно действующего катализатора, вызывающего прогрессивное убывание количества озона в атмосфере. Предсказание величины последнего, однако, пока затруднительно из-за неточного знания как констант фотохимических реакций в атмосфере, так и содержания в ней ряда примесей, в частности атомарного азота.

Существование слоя озона в атмосфере, как известно, имеет большое биологическое значение, защищая биосферу Земли от избытка вредной для нее ультрафиолетовой радиации с длиной волны $\lambda < 290$ нм. Вместе с тем примесь озона важна из-за возможных его реакций с другими малыми примесями атмосферы и обусловленного им нагревания и движения воздуха стратосферы. Исследования последних лет показали, что озон легко вступает во взаимодействие и с теми малыми примесями воздуха, которые возникают благодаря деятельности человека. Ясно, что такое взаимодействие, локальное и глобальное, следует подробно изучать. Наибольшее внимание при этом привлекают реакции с различными окислами азота -, NO, NO2, N2O5 и др. Они, в частности, образуются в значительном количестве в реактивных двигателях (при очень высокой температуре) стратосферного сверхзвукового транспорта из азота и кислорода воздуха. Ожидаемое в ближайшие годы развитие стратосферной авиации делает исследованием ее воздействий на явления стратосферы особенно актуальным [1-4].

Мы не будем приводить здесь известные скемы образования и равновесия озона в чистой кислородной атмосфере. Из реакций окислов азота с озоном и радиацией Солнца (см. таблицу) наибольшее значение имеет «малая цепочка» (А)

$$\begin{cases} Q_3 + NO \rightarrow NO_2 + O_2 \\ NO_3 + hv \rightarrow NO + O \end{cases}$$
, (A) (1)
(2)

в которой окись азота NO выступает как катализатор разрушения озона.

Заметим, что разрушающая двуокись азота радиация должна иметь длину волны менее 397,5 нм и что она почти свободно проходит сквозь слой озона.

В атмосфере NO в принципе может не только расходоваться на образование NO₂ (как в (A)), но и разрушаться в некоторой степени реакциями, подобными (3), выходя таким образом из озонного цикла. Об этой возможности мы скажем подробнее несколько ниже.

Мы попытались сделать некоторые оценки разрушения озонного слоя пролетающим на высоте h=16 км реактивным самолетом, дающим с выхлопными газами Q молекул двуокиси азота на единицу пути. Мы обозначили через U(x, z, t), V(x, z, t) и W(x, z, t) соответственно

ВЕСТН. МОСК. УН-ТА. СЕР. ФИЗИКА, АСТРОНОМИЯ, Т. 18, № 3 - 1977

концентрации молекул NO, NO₂ и O₃ в см³ на горизонтальном расстоянии x и вертикальном z о пути самолета в момент t после его пролета. При этом можно считать, что естественный процесс образования (в данном случае восстановления) озона в нижней стратосфере идет очень медленно и что в уравнении для W им можно пренебречь.

Рассмотрим вначале наиболее простую задачу, учитывающую лишь небольшое число важнейших реакций. Рассмотрим процесс взаимодействия NO, NO₂ и O₃ на той стадии, когда облако окислов азота распространилось достаточно широко и они почти равномерно распределены в пространстве. Процессами диффузии можно пренебречь и считать, что плотность озона везде одинакова:

$$\frac{dU}{dt} = -kUW + JV,$$
(3)
$$\frac{dV}{dt} = kUW - JV,$$
(4)

причем $U = U_0$, $V = V_0$ при t = 0.

В этом случае функции U и V зависят только от времени.

Продифференцировав уравнение (3) по t и учтя, что $\frac{dV}{dt} = -\frac{dU}{dt}$, получаем уравнение

$$\frac{d^2U}{dt^2} = -kW\frac{dU}{dt} + Y\frac{dV}{dt} = -(kW+J)\frac{dU}{dt}.$$
(5)

Так как при $t = 0 \frac{dU}{dt} = JV_0 - kWU_0$, то, интегрируя (5), имеем

$$\frac{dU}{dt} = (JV_0 - kWU_0) e^{-(J+kW)t}$$

и окончательно

$$U = \frac{JV_0 - kWU_0}{kW + J} [1 - e^{-(kW + J)t}] + U_0 =$$

= $\frac{JQ}{kW + J} - \frac{'JV_0 - kU_0}{kW + J} e^{-(kW + J)t}$, (6)

где через Q обозначена суммарная концентрация $U_0 + V_0$. Коэффициенты J и kW, определяющие показатель эспоненты в (6), велики, поэтому экспонента спадает до 0 очень быстро и можно считать, что

$$U = \frac{J}{J + kW} Q \quad H \quad V = \frac{kW}{J + kW} Q. \tag{6'}$$

С ростом «фоновой» концентрации озона W и U — убывают, а V — растет.

Далее можно попытаться решить численным способом задачу в ее более полном виде, с помощью системы уравнений (Б)

$$\frac{\partial U}{\partial t} = D\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial z^2}\right) + JV - kUW - \alpha_1 U$$
(7)

$$\frac{\partial U}{\partial t} = D\left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial z^2}\right) - JV + kUW - \alpha_2 V \qquad \left\{ \begin{array}{c} , \quad (5) \quad (8) \end{array} \right.$$

где учтена уже диффузия (турбулентная) всех примесей, характеризуемая коэффициентом диффузии D. В (7) — (9) константы α_1 и α_2 описывают, кроме того, скорость распада NO и NO₂ (расхода их «на

ВЕСТН. МОСК. УН-ТА. СЕР. ФИЗИКА, АСТРОНОМИЯ, Т. 18, № 3 — 1977

сторону») на реакции, указанные в таблице, но не учтенные в цепочке (A). Так, реакции 6, 8 и 9 не сохраняют окислы азота в цепочке, но скорости их меньше скорости основных для (A) процессов и ими можно пренебречь. Реакцию 10 можно не учитывать, так как $K_{10} \ll K_1$. Наоборот, не исключено, что реакции 3, 4 и 5 играют заметную роль в химии стратосферы, выводя азот из цепочки (A). Для оценки их влияния, однако, нужно знать концентрацию атомарного азота, т. е. величину, которую пока не удалось измерить. Специально нужно исследовать и разрушение NO на свету в верхней стратосфере по реакции 7. Исходя из этих соображений мы положим в дальнейшем $\alpha_1 = \alpha_2 = 0$.

Реакции с учетом NO и NO2	h (км); Т°	Константа реакция, К; Скорость распада NO ₂ , J	Источник
1. $O_3 + NO \rightarrow NO_2 + O_2$		1,33 $\cdot 10^{-12} \exp(-1250/T)$ 9,5 $\cdot 10^{-13} \exp(-1230/T)$ 9,5 $\cdot 10^{-13} \exp(-1240/T)$ 10 ⁻¹² exp(-1250/T) 9 $\cdot 10^{-13} \exp(-1250/T)$	[2] [3] [9] [8] [1,9]
2. $NO_2 + hv \rightarrow NO + O$	h=15 h=50	$\lambda < 4000 \text{ Å}, J = 5 \cdot 10^{-3}$ $\lambda < 3975 \text{ Å}, J = 3 \cdot 10^{-3}$ $J = 4 \cdot 10^{-3}$	[2] [8] [8]
3. $N + NO \rightarrow N_2 + O$		$2 \cdot 10^{-11}$ 5, $1 \cdot 10^{-11}$ exp (170/T) 2, $7 \cdot 10^{-11}$	[2] [10] [1]
4. $N + NO_3 \rightarrow N_2O + O$	·. 	$7,7.10^{-12}9.10^{-12}$	[3] _ [1]
5. $N + NO_2 \rightarrow N_2 + O_2$	—	4,3.10-12	[3]
6. $N + NO_2 \rightarrow 2NO$	_	6·10 ⁻¹²	[1]
7. $NO + hv \rightarrow N + O$	_	$5 \cdot 10^{-6}, \lambda = 1920 \text{ \AA}$	[2]
8. $NO + HO_2 \rightarrow NO_2 + OH$		2·10 ⁻¹³	[1, 2, 3]
9. $NO_2 + O \rightarrow NO + O_2$		5.10 ⁻¹³ 1,67.10 ⁻¹¹ exp (-300/T) 9,12.10 ⁻¹³ 3,2.10 ⁻¹¹ exp (-302/T) 7.10 ⁻¹³ 9,2.10 ⁻¹³ 5.10 ⁻¹³ $T^{1/2}$ 10 ⁻¹³ $T^{1/2}$ exp (-350/T) $J_{N_2O} = 9,5.10^{-3}$	[8] [2] [1,3] [9] [8] [8] [8]
10. $NO_2 + O_3 \rightarrow NO_3 + O_2$		10-11 exp (-3500/T) 1,23 \cdot 10 ⁻¹³ exp (-2470/T)	[2] [1]

При этом можно считать, что естественный процесс образования (в данном случае восстановления) озона в нижней стратосфере идет медленно и что им можно в уравнении для W пренебречь.

За начальное распределение концентрации озона W₀ мы выбрали среднее его распределение по наблюдениям Х. Дютша на Пайерном (Швейцария) в 1966—1972 гг. [5]. За исходное распределение двуокиси

58

азота NO₂ было выбрано то, которое наблюдалось бы через 60 с после пролета при простой диффузии этого вещества:

$$V = \frac{Q}{4\pi Dt_0} \exp\left(-\frac{r_0^2}{4Dt_0}\right),$$
 (10)

 t_0 — выбрано так, чтобы полуширина начальной области распространения r_0 была равна 80 м при $D = 10 \text{ м}^2/\text{с}$. Мы положим также, согласно данным Инглиша [6], величину $Q = 1,25 \cdot 10^{21}/\text{м}$; $U_0 = 0$ при t = 0, так как по данным лабораторных исследований [4] в отработанных газах реактивных двигателей окислы азота почти полностью состоят из NO₂. Далее, мы приняли, что $k = 0,3 \cdot 10^{-20} \text{ м}^3/\text{с н } J = 3,5 \cdot 10^{-3} \text{ с}^{-1}$. За обла́сть решения был выбран квадрат, размеры которого значительно

(в 4—5 раз) превосходят размеры области сосредоточения NO_2 . Поэтому на границе этой области (а) задавалась U=V=0 и также $W=W_0$, соответствующее упомянутому исходному распределению.

Для решения использовался метод переменных направлений [7], вполне устойчивый при любом выборе шагов по времени и в пространстве. Так как по мере диффузии окислов азота область их сосредоточения расширяется, то в схеме решения было предусмотрено автоматическое расширение границ области решения (а) (при этом граничные условия можно было сохранить неизменными) и одновременно укрупнение шага сетки по времени и пространству.

По данным Николэ и Питерманса, на высоте 16 км [8] D=3-5 м²/с, мы использовали значение D=5 м²/с, а также D=10 м²/с. Повышенный D косвенно описывает эффект поперечного сдвига ветра, сильно ускоряющего диффузию примесей. Мощность источ-

ника NO_x бралась равной $Q_1 = 5Q$ и $Q_2 = 10Q$, где $Q = 1,25 \cdot 10^{21}$ молекул на метр траектории самолета.

На рис. 1 изображены определенные по полной системе (Б) изоплеты плотности озона в относительных единицах через $t_1 = 7,8$ мин и t_2 =31,7 мин при D=5 м²/с и Q_2 =1,25·10²² мол/м. Изоплеты характеризуют наглядно размер и интенсивность области депрессии азона, образуемой источником NO, и ее изменение со временем. Профиль вертикального распределения озона (рис. 2) еще лучше позволяет описать ход местного разрушения O3. Видно, что малое D способствует энергичному разрушению озона вблизи следа самолета. Увеличение D, к которому этот процесс, следовательно, очень чувствителен, ведет к быстрому восполнению озона в области его депрессии путем диффузии этого газа извне. Величина депрессии в обоих случаях, однако, незначительна. Эффект мощного катализатора разрушения O₃, каким является NO, таким образом, на первый взгляд ограничен. Наши расчеты далее показали, что равновесие устанавливается быстро, сравнительно с процессом разрушения озона, и поэтому соотношения (6) и (6') можно использовать на всем протяжении расчета изменения плотности озона,

Отдельно была рассчитана величина K_y — относительное убывание массы озона в вертикальном столбе воздуха сечением в 1 см², проходя-

Рис. 1. Изоплеты концентрации озона $W: a - t = 7,8, \ 6 - t = 31,8$ мин. Ось следа в центре квадрата

ร

ВЕСТН. МОСК. УН-ТА. СЕР. ФИЗИКА, АСТРОНОМИЯ, Т. 18, № 3 - 1977

щем через ось следа, т. е. в области максимального разрушения озона. Нормальное количество озона в этом столбе эквивалентно $3 \cdot 10^{18} \text{ мол/см}^2$ (при приведенной толще озонного слоя 0,3 см). Кривые изменения K_y (в %), представленные на рис. 3, показывают, что даже

Рис. 2. Профили распределения озона вдоль вертикали, проходящей через ось следа. $Q_r = 1,25 \cdot 10^{22}$ мол/м. a: D = 5 м²/с: 1 - t = 7,8; 2 - t = 31,8; 3 - t = 130 мин; б: D = 10 м²/с, 1 - t = 4, 2 - t = 16, 3 - t = 64 мин

при малом $D=5 \text{ м}^2/\text{с}$ и удесятеренной $Q_2 K_y$ очень невелико, менее 0,08%. Оно еще уменьшается при увеличении D

При наличии сдвига ветра (изменения его скорости с высотой), в особенности при боковом ветре, K_y в области полета будет, очевидно, еще меньше и еще скорее убывать со временем. Несмотря на уменьшение общей массы озона (примеси NO_x не исчезают из атмосферы)

Рис. 3. Изменения со временем доли уничтоженного озона K_y (в %) в вертикальном столбе атмосферы, проходящем через ось следа. $a - D = 5 \text{ m}^2/\text{с}, 6 - D = 10 \text{ m}^2/\text{c}; 1 - источник 10 Q,$ $2 - источник 5 Q (Q=1,25 \cdot 10^{21} \text{ мол/м})$ местное ослабление толщи слоя озона невелико и быстро уменьшается со временем в результате рассредоточения процесса разрушения озона во все возрастающей области пространства и диффузионного заполнения озоном области его депрессии. Это делает, в частности, очень трудными попытки наблюдать непосредственно разрушение озона близ следа самолета.

Итак, в результате численного решения задачи (Б) вырисовывается следующая картина эффекта стратосферного сверхзвукового транспорта. Разрушение озона идет прогрессивно, и общая его масса постепенно уменьшается, но в геометрии процесса происходят при этом быстрые изменения. Лишь в течение нескольких первых минут процесс разрушения локализован вблизи следа самолета. Вскоре область депрессии

расплывается и степень разрушения озона в области следа убывает. Это происходит как за счет заполнения внутренней области диффузионным притоком озона, так и за счет «расползания» самой примеси NOx.

Вывод о том, что локальное изменение озона, вызванное одиночным полетом, незначительно, не имеет, однако, общего значения. При оценке

следствий длительной эксплуатации стратосферного сверхзвукового транспорта нужно будет учитывать и другие, сравнительно многочисленные процессы разрушения [9], может быть (как это выяснилось недавно), образование озона при участии солнечной радиации. С этими условиями в дальнейшем и следует решать задачу о постоянном источнике NO_x в области (коридоре) действия стратосферного сверхзвукового транспорта. Очень важно, кроме того, выяснить механизм удаления NO_x из стратосферы, например, реакциями 3, 4 и 5, препятствующими их накоплению. Для этого, в частности, необходимо оценить концентрацию имеющегося в стратосфере атомарного (см. [10]) азота, участвующего в разрушении NO_x, и организовать регулярные наблюдения за вариациями NO и NO₂ в стратосфере.

ЛИТЕРАТУРА

- Chang J. S., Johnston H. S. The effect of NO_x effluents on ozone. Proc. Third Conf. on impact Assessment program; Washington, 1974, p. 323-329.
 Crutzen P. Proc. of I'st Conf. on the Climatic Impact Assessment Program. Wa-
- shington, 1972, p. 80-81. 3. Crutzen P. «Pure and appl. Geophys.», 1973, 106-108, 1385-1399. 4. Grobman I. I-st Confer.; on Climat. Impact Assessment, 1973, Cambridge, Mass.,
- p. 25--33.

- p. 25-33.
 5. Dutsch H. U., Züllig W., Ling Ch. Regular ozone observations of vertical ozone distribution at Thalwill, Switzerland, and Boulder, Colorado, Zürich, 1970.
 6. English J. M. Proc. III-d Conf. on the Clinatic Impact Assessment Program. Cambridge, 1974, p. 16-48.
 7. Самарский А. А. Введение в теорию разностных схем. М., 1971.
 8. Nicolet M. Proc. 1-st Conf. on the Climatic Impact Assessment Program. Camburg, 1972, p. 44-70.
 9. Shimazaki T., Wuebbles D. J. «Pure and appl. Geophys.», 1973, 106-108, 1446-1463.
- 1446-1463.
- 10. Vupputuri R. K. R. Seasonal and latitudianal variations of N₂O and NO_x in the stratosphere. Proc. Intern. Conf. Struct. Comp.; Circul; of Atm. 1974, Melbourne, vol. II, p. 881—904.

Поступила в редакцию 18.11 1976 г. Кафедра физики атмосферы