УДК 551.465 Н. К. Шелковников Л. А. Букина П. В. Миронов С. М. Новочинский С. Г. Слизков

СТРУКТУРА ТУРБУЛЕНТНОГО ПОТОКА В КАНАЛЕ СО СВОБОДНОЙ ГРАНИЦЕЙ

По экспериментальным данным рассматривается вертикальная структура турбулентности в канале со свободной границей. В частности, рассматривается вертикальное распределение турбулентного трения, коэффициента турбулентной вязкости, горизонтальных размеров (масштабов) турбулентности. Приводятся экспериментальные данные, полученные путем регистрации продольных и вертикальных компонентов скорости методом термогидрометра. Приводятся временные и пространственные масштабы Лагранжа, определенные по пространственно-временным корреляциям.

В работе исследуется структура турбулентности в канале со свободной границей. В частности, рассматривается вертикальное распределение масштабов турбулентности (l, l_0) , турбулентного трения $\tau = -\rho u' w'$, коэффициента турбулентной вязкости $k = \frac{\tau}{du/dz}$, определяются временные и пространственные масштабы Лагранжа.

Регистрация продольных (u') и вертикальных (w') [1] компонентов скорости осуществлялась методом термогидрометра одновременно в двух точках, расстояние между которыми оставалось постоянным или последовательно изменялось в зависимости от поставленной задачи. Средняя скорость потока определялась с помощью стандартной микровертушки [2]. Тарировка термогидрометров по угловой и продольной составляющим скорости проводилась «пульсационным» методом непосредственно в исследуемом потоке [1].

Вертикальное распределение горизонтальных масштабов неоднородностей определялось как по пространственно-временным $R(x, 0, 0, \tau)$, так и по временным $R(0, 0, 0, \tau)$ корреляциям. В первом случае два идентичных термогидрометра разносились на фиксированное расстояние $X_1=30$ см, а размеры неоднородностей определялись по формуле [3]

$$l = \frac{X_1}{\tau_m} \int_{\tau_1}^{\tau_2} R(X_1, 0, 0, \tau) d\tau, \qquad (1)$$

где $u_{\mathbf{r}} = X_1/\tau_m$ — скорость движения турбулентных неоднородностей, τ_m — оптимальное время запаздывания, интерпретируемое как необходимое для прохождения турбулентными неоднородностями расстояния между датчиками; τ_m определялось как временное смещение максимумов $R(X_1, 0, 0, \tau)$ относительно начала координат, τ_1 и τ_2 — значения (временные), при которых $R(X_1, 0, 0, \tau)$ принимает первые минимальные значения.

Вертикальное распределение *l*, вычисленное по формуле (1), как видно из приведенной таблицы, достигает максимальных значений, равных 27 и 43 см на относительных глубинах $\eta = 0.83$ и $\eta = 0.21$. Аналогичное распределение наблюдалось и для масштабов l_0 , вычисленных в предположении справедливости гипотезы Тейлора по формуле $l_0 = u \cdot \tau$,

где u — средняя скорость потока, $\tau = \int_{0}^{\infty} R(0, 0, 0, \tau) d\tau$ — временной

эйлеров масштаб. В этом случае максимальные значения, равные 19 и 40 см, также наблюдались на глу-

бинах $\eta = 0,83$ и $\eta = 0,21$ (см. табл.). Из сопоставления l и l_0 видно, что $l > l_0$ (за исключением глубин $\eta =$ = 0,36 и $\eta = 0,4$). Эта разница обусловлена эффектом «расплывания» турбулентных неоднородностей за время их прохождения между термогидрометрами.

Следует отметить, что при определении масштабов турбулентности в обоих случаях скорость переноса турбулентности совпадает со средней скоростью потока. Одна-

ຖ	10 _{см}	l _{cm}
0.90	12	19
0.83	19	27
0.73	15	22
0,65	12	15
0,56	19	22
0,40	19	12
0,36	38	33
0,21	40	43
0,17	7	22
0,15	19	32

ко экспериментальные данные свидетельствуют о возможном несовпадении этих скоростей. Так, по данным [4], скорость переноса энергии турбулентных пульсаций может значительно отличаться от средней скорости переноса вещества. Причем в центральной зоне пограничного слоя $\delta(z/\delta \sim 0.25)$ значения временной и пространственной корреляции совпадают, но при малых значениях z/δ поле турбулентных пульсаций перемещается с большей скоростью, чем средняя скорость переноса вещества. При большем удалении от стенки $u_T < u$.

Вертикальное распределение $u_{\rm T}$ и u для наших опытов представлено на рис. 1. Из сопоставления кривых $u_{\rm T}$ и u видно, что в придонной области (0,15 $\leq \eta \leq 0,25$) и в средней части потока (0,4 $\leq \eta \leq 0,75$) значения $u_{\rm T}$ и u совпадают с точностью метода измерения. В области же глубин 0,25 $\leq \eta \leq 0,4$ и 0,75 $\leq \eta \leq 0,95$ $u_{\rm T} > u$. Максимальная разница между скоростью переноса вещества и скоростью переноса энергии турбулентных пульсаций имеет место на глубинах $\eta \simeq 0,3$ и $\eta \simeq 0,8$, где в распределении $u_{\rm T}$ наблюдаются максимумы.

Как известно, характеристики турбулентности в переменных Эйлера дают информацию о временной структуре турбулентности; более полные сведения о времени жизни неоднородностей (их изменчивости) могут быть получены в переменных Лагранжа. В этом случае представляется возможным проследить за выбранным объемом жидкости на некотором участке его движения и получить информацию не только о скорости движения турбулентных неоднородностей, но и о их расплывании (диффузии).

Для определения временных и пространственных масштабов Лагранжа были проведены измерения продольных компонентов скорости синхронно в двух точках, расстояние между которыми в процессе эксперимента последовательно изменялось от 40 до 160 см. В результате были получены пространственно-временные корреляции $R(X_1, 0, 0 \tau)$, соответствующие различным значениям X_1 .

Представляется, что огибающую максимумов функций $R(X_1, 0, 0, \tau)$ можно интерпретировать как функцию Лагранжа и, следовательно, по ней определять временной лагранжев масштаб турбулентности. На рис. 2 приведен пример функции Лагранжа, определенной по огибающей максимумов $R(X_1, 0, 0, \tau)$. Как видно из рисунка, с увеличением X_1 значение корреляции при τ_m убывает и при $\tau_m = 12,5$ с стремится к нулю.

Временной лагранжев масштаб T_L , рассчитанный по нулевому уровню корреляции, равен таким образом ~12,5 с. Для выбранного уровня средняя скорость движения турбулентных неоднородностей $u_{\rm T} \simeq 15$ см/с.

Рис. 1. Вертикальное распределение средней скорости (1) и скорости переноса турбулентных пульсаций (2)

Рис. 2. Пример функции Лагранжа в потоке со свободной поверхностью: 1—40, 2—60, 3—80, 4—100, 5—130, 6— 160 см.

Пространственный лагранжев масштаб для этого случая $L_L = u_T L_T$ равен $L_L \simeq 187$ см, что составляет 9,4 глубин потока.

Как уже отмечалось выше, кроме масштабов было определено вертикальное распределение турбулентного трения τ и коэффициента турбулентной вязкости k. Значения u'w' вычислялись по функциям взаимной корреляции $R_{u'w'}$

$$u'w' = R_{u'w'}\sigma_1\sigma_2s_1s_2u,$$

где s_1 , s_2 — чувствительность термогидрометра к продольным и вертикальным компонентам скорости, σ_1 и σ_2 — среднеквадратичные отклонения продольной и вертикальной компонентов скорости. Корреляция $R_{u'w'}$ определялась по 384 значениям u' и w'.

Распределение напряжения Рейнольдса $|\tau|$ и коэффициента турбулентной вязкости k приведено на рис. З и 4. Как видно из этих рисунков, характер распределения τ и k близок друг к другу. В обоих случаях имеет место максимальное значение у нижней (твердой) и верхней (квазижесткой) границы потока.

Для установления связи между напряжениями Рейнольдса и полем средней скорости интересно рассмотреть вопрос о механизме распределения напряжений т в турбулентном потоке.

По Брэдшоу [5] происходит растяжение элементов жидкости в направлениях ориентации осей завихренности. При этом поперечное сечение элементов жидкости уменьшается, что приводит к увеличению пульсаций скорости в плоскости, перпендикулярной направлению растяжения. Следствием этого является дополнительное растяжение вихрей, но меньшего масштаба, чем первоначальное. Такой процесс идет постоянно, В конечном итоге он приводит к тому, что часть вихрей теряет свою определенную ориентацию и становится статистически изотронной, внося нулевой вклад в напряжения Рейнольдса.

В [2, 3, 8, 9] считается; что напряжения т для трубы и канала убывают по линейному закону. Если принять во внимание предположение Брэдшоу о формировании напряжений Рейнольдса наиболее

Рис. 3. Вертикальное распределение |τ| напряжений Рейнольдса в потоке

Рис. 4. Вертикальное распределение коэффициента турбулентной вязкости в потоке

крупными вихрями, то можно ожидать также линейного убывания размеров вихрей по мере удаления от дна потока. А поскольку кинетическая энергия пропорциональна напряжению трения т, то и она должна убывать.

Однако экспериментальное определение вертикального профиля турбулентного трения показало, что $|\tau|$ при увеличении η возрастает, достигает максимального значения при $\eta \cong 0,2$, затем в области глубин $0,4 \leqslant \eta \leqslant 0,70$ оно минимально и на глубине $\eta \cong 0,8$ также имеет максимальное значение. Подтверждением того, что максимум τ в области $\eta \cong 0,2$ не случаен, может служить, по-видимому, тот факт, что размеры неоднородностей и кинетическая энергия в интервале частот 0,5-2,5 Гц (как показал анализ функций спектральной плотности, основная доля энергии приходится именно на этот интервал частот) также принимают максимальные значения в области $\eta \cong 0,2-0,3$. Таким образом, эти данные подтверждают предположение о пропорциональности кинетической энергии и напряжений τ размерам турбулентных неоднородностей.

Из вышеизложенного можно сделать также вывод о том, что при увеличении расстояния от нижней и верхней границ потока до $\eta < 0,2$

2 ВМУ № 6, физика, астрономия

и $\eta > 0.8$ соответственно происходит процесс растяжения вихрей, сопровождающийся взаимодействием с осредненным движением, что приводит к увеличению напряжений т и кинетической энергии в области основных энергонесущих частот. При этом растяжение вихрей сопровождается значительным увеличением завихренности и дополнительными растяжениями элементов жидкости меньшего масштаба. По-видимому, при $\eta > 0.2$ и $\eta < 0.8$ этот процесс становится преобладающим и приводит к дроблению вихрей, вследствие чего изменяется ориентация элементов жидкости и появляется сдвиг фаз между и' и w'.

В заключение можно отметить, что вертикальные профили масштабов турбулентности, напряжений Рейнольдса и коэффициента обмена имеют максимумы у обеих границ потока. В турбулентном потоке при n<0,2 и 0,8<n<1,0 идет процесс растяжения вихрей, сопровождающийся увеличением энергии наиболее крупных из них. т. е. происходит увеличение масштабов турбулентности. При 0,2<1<0,6 и 0,6<1<0,8 происходит дробление крупных вихрей, в результате чего энергия переходит в область более высоких частот, а размеры турбулентных неоднородностей уменьшаются.

ЛИТЕРАТУРА

- 1. Букина Л. А., Шелковников Н. К., Миронов П. В. «Вестн. Моск. ун-та. Физ., астрон.», 1974, 14, № 5.
- 2. Букина Л. А., Шелковников Н. К. «Вести. Моск. ун-та. Физ., астрои.». . 1975, **16**, № 6.
- 3. Шелковников Н. К. «Вестн. Моск. ун-та. Физ., астрон.», 1974, 14, № 5. 4. Фавр А. «Механика», 1965. Т. 2, № 90.

- 5. Брэд шо у. Введение в турбулентность и ее измерение. М., 1974. 6. Минский Е. М. Турбулентность руслового потока. М., 1952. 7. Никитин И. К. Турбулентный русловой поток и процессы в придонной области. Киев, 1963.
- 8. Лятхер В. М. Турбулентность в гидросооружениях. М., 1968. 9. Хянце И. О. Турбулентность. М., 1963.

Поступила в редакцию 27.4 1976 г. Кафедра физики моря и вод суши