ВЕСТН. МОСК. УН-ТА. СЕР. ФИЗИКА, АСТРОНОМИЯ, Т. 19, № 2 — 1978

УДК 621.315.592

А. Г. Белов Е. П. Рашевская

СПЕКТРЫ ОТРАЖЕНИЯ ТВЕРДЫХ РАСТВОРОВ Рb_{0,8}Sn_{0,2}Te В ДАЛЕКОЙ ИК-ОБЛАСТИ

В работе исследовались спектры отражения монокристаллических образцов Pb_{0.8}Sn_{0.2}Te и эпитаксиальных пленок Pb_{0.8}Sn_{0.2}Te на подложке из PbTe в диапазоне длин волн 20-200 мкм при температурах 300 и 115 К. Проведен расчет статистики свободных носителей для кейновских зон, постоянной Холла и плазменной частоты в зависимости от положения уровня Ферми.

В литературе имеются лишь отрывочные сведения, касающиеся спектров отражения твердых растворов Pb_{1-x}Sn_xTe. В настоящей работе проведено систематическое исследование спектров отражения Pb_{0,8}Sn_{0,2}Te в далекой ИК-области в широком интервале концентраций свободных носителей при различных температурах и определены соответствующие оптические параметры.

В работе исследовались спектры отражения монокристаллических образцов Pb_{0.8}Sn_{0.2}Te и эпитаксиальных пленок Pb_{0.8}Sn_{0.2}Te на подложках из PbTe в диапазоне длин волн 20÷200 мкм при температурах 300 и 115 К. Для проведения измерений использовался однолучевой спектрофотометр FIS-21 (фирма «Хитачи», Япония), приспособленный нами для исследований спектров отражения. Образец в криостате помещался в монохроматический пучок позади диспергирующего элемента. Конструкция криостата позволяла заменять образец эталонным зеркалом без нарушения вакуума внутри прибора и без изменения режима работы спектрофотометра, что существенно повышало точность измерений и убыстряло сам процесс снятия спектров отражения.

Монокристаллические образцы полировались пастой ACM-1 и промывались в спирте, поверхность эпитаксиальных пленок получалась достаточно хорошей уже в процессе роста и никакой обработки не требовала. Исследованные эпитаксиальные пленки имели толщину 50-70 мкм. Контрольные измерения показали, что при такой толщине пленок подложка не оказывает влияния на спектры ИК-отражения. Для проведения холловских измерений пленки Pb_{0,8}Sn_{0,2}Te отделялись от подложек из PbTe и переносились на изолирующие подложки.

Экспериментальные результаты. В работе [1] было показано, что для образцов с концентрацией носителей $\leq 10^{16}$ см⁻³ спектр ИК-отражения обусловлен коротковолновым фронтом полосы остаточных лучей. Была определена частота LO-фонона для T=115 K: $\omega_{\rm LO}=$ = (111±2) см⁻¹. При концентрациях свободных носителей $\geq 10^{18}$ см⁻³ влиянием кристаллической решетки можно пренебречь: спектр отражения в этом случае определяется свободными носителями (плазменный резонанс). Для промежуточных концентраций при анализе спектров ИК-отражения необходимо учитывать плазмон-фононное взаимодействие.

jn;

На рис. 1 приведены спектры отражения некоторых исследованных образцов при T = 300 и T = 115 К (параметры образцов представлены в табл. 2). Концентрация свободных носителей изменялась в пыроких пределах: $10^{16} \div 10^{18}$ см⁻³. Из рис. 1 видно, что при понижении температуры от 300 до 115 К спектры отражения образцов

№ 1 и 2 сдвигаются в длинноволновую область, а спектры отражения образцов № 4, 6, 8— в коротковолновую. Кривые $R(\lambda)$ обрабатывались на ЭВМ «Мир-1» с помощью дисперсионных соотношений Крамерса — Кронига. Характеристические частоты плазмонов ($\omega_{p \ эксп}$) и смешаных плазмон-фононных мод ($\omega_{+ эксп}$) определялись по максимумам зависимостей $\omega \operatorname{Im}\left(-\frac{1}{\varepsilon}\right) = f(\omega)$.

Модель зонной структуры и расчет статистики свободных носителей. В настоящем разделе приводятся соотношения, по которым производились расчеты концентраций свободных носителей, а также плазменной частоты и частот смешанных плазмон-фононных мод при T = 300 м T = 115 К. За основу взята модель энергетического спектра твердых растворов $Pb_{0,8}Sn_{0,2}Te$, предложенная в работе [2]. Если считать, что прямой зазор ε_g меняется с температурой линейно $\left(\frac{d\varepsilon_g}{dT} \approx 0.4$ мэВ/град), а зазор $\varepsilon_g + \Delta$ остается постоянным ($\varepsilon_g + \Delta =$

Рис. 2. Энергетический спектр сплава Pb_{0,8}Sn₂Te (по данным работы [2])

=240 мэВ), тогда для интересующих нас температур энергетический спектр твердого раствора Pb_{0,8}Sn_{0,2}Te примет вид, изображенный на рис. 2.

Принято считать (см., например, [3] или [4]), что зона проводимости и зона легких дырок сплавов $Pb_{1-x}Sn_x$ Те имеют по 4 эквивалентных экстремума, а зона тяжелых дырок состоит из 12 долин. Зона тяжелых дырок считается изотропной и параболической, причем эффективная масса меняется при изменении состава: в [3] приводятся данные для эффективной массы плотности состояний $m_{d_T} = 1, 6m_0$ для $Pb_{0.5}Sn_{0.5}$ Те и $m_{d_T} = 1, 4m_0$ для $Pb_{0.7}Sn_{0.3}$ Те (экстраполируя эти величины, получим для $Pb_{0.8}Sn_{0.2}$ Те $m_{d_T} \approx 1, 3m_0$). Зона проводимости и зона легких дырок представляют собой сильно анизотропные эллипсонды вращения: отношение продольной и поперечной эффективных масс $K=m_l/m_t=10$ [5, 6] и практически не зависит от состава.

Законы дисперсии в зоне проводимости и в зоне легких дырок заметно отличаются от параболического. Обычно используемые для узкозонных полупроводников модели Кейна и Коэна описывают энергетический спектр $Pb_{1-x}Sn_xTe$ лишь приближенно [7]; в данной работе, как и в работе [8], использовалась модель Кейна. Оценки показывают, что для интересующих нас энергий отличие использованной модели Кейна от более сложных, учитывающих влияние далеких зон, не превосходит 30%.

В модели Кейна эффективная масса плотности состояний на дне

ВЕСТН. МОСК. УН-ТА. СЕР. ФИЗИКА, АСТРОНОМИЯ, Т. 19, № 2—1978

зоны (в расчете на один эллипсоид) $m_d^{(1)}(0)$ связана с шириной прямого зазора ε_g соотношением

$$m_d^{(1)}(0) = \frac{3\hbar^2 \epsilon_g}{4P_{CV}^2},\tag{1}$$

тде P_{CV} — матричный элемент взаимодействия V- и C-зон, причем P_{CV} не зависит ни от температуры, ни от состава образцов: $P_{CV}=4,2\cdot10^{-8}$ зВ·см [9].

Если задано положение уровня Ферми ε_F , то концентрации свободных электронов *n*, легких дырок p_{π} и тяжелых дырок p_T можно определить из следующих соотношений:

$$n = M_1 \frac{\sqrt{3}}{2\sqrt{2}\pi^2} - \frac{(\kappa T e_g)^{3/2}}{P_{CV}^3} {}^{0}L_0^{3/2} \left(\frac{e_F}{\kappa T}; \frac{\kappa T}{e_g}\right),$$
(2)

$$\rho_{\pi} = M_1 \frac{\sqrt{3}}{2\sqrt{2}\pi^2} \frac{(\kappa T \boldsymbol{e}_g)^{3/2}}{P_{CV}^3} \, {}^{\boldsymbol{0}}L_0^{3/2} \left(-\frac{\boldsymbol{e}_F + \boldsymbol{e}_g}{\kappa T}; \frac{\kappa T}{\boldsymbol{e}_g}\right), \tag{3}$$

$$p_T = M_2 \frac{8\pi}{3\hbar^3} \left(2m_{d_T}^{(1)} \cdot \kappa T \right)^{3/2} F_{3/2} \left(- \frac{e_F + e_g + \Delta}{\kappa T} \right), \tag{4}$$

где $M_1 = 4$, $M_2 = 12$ — число долин в соответствующей зоне, k — постоянная Больцмана. Здесь $L_0^{3/2}\left(\frac{\varepsilon_F}{\kappa T}; \frac{\kappa T}{\varepsilon_g}\right)$; $F_{3/2}\left(-\frac{\varepsilon_F + \varepsilon_g + \Delta}{\kappa T}\right)$ — двух- и однопараметрические интегралы Ферми (протабулированы в [10]), $m_{dT}^{(1)}$ — масса плотности состояний тяжелых дырок в расчете на один эллипсоид. Оптические эффективные массы электронов и легких дырок могут быть определены по формуле

$$m_{\rm onr} = \frac{3K}{2K+1} K^{-1/3} \frac{{}^{0}L_{0}^{3/2}}{{}^{0}L_{-1}^{3/2}} m_{d}^{(1)}(0), \qquad (5)$$

для тяжелых дырок $m_{pT_{\text{OUT}}} = \frac{m_{d_T}}{M_2^{2/3}} \approx 0,25m_0.$

i

Для плазменной частоты ω_{ρ} в случае трех типов носителей получаем

$$\omega_{\rho}^{2} = \frac{4\pi e^{2}}{\varepsilon_{\infty}} \left(\frac{n}{m_{n_{\text{OHT}}}} + \frac{p_{\pi}}{m_{\rho_{\pi}\text{OHT}}} + \frac{p_{\tau}}{m_{\rho_{T}\text{OHT}}} \right), \tag{6}$$

где e — заряд электрона, ε_{∞} — высокочастотная диэлектрическая проницаемость (считалась не зависящей от температуры и принималась равной ε_{∞} = 38 для PbTe при 77 K [11]).

При 115 К вкладом зоны тяжелых дырок в постоянную Холла вплоть до концентраций дырок $\sim 10^{19}$ см⁻³ можно пренебречь. В этом случае постоянную Холла R_x с точностью до холл-фактора можно представить в виде

$$R_x = -\frac{1}{ne}$$
 (*n*-тип), $R_x = -\frac{1}{p_{\pi}e}$ (*p*-тип). (7)

Достоверные данные относительно холл-факторов в литературе отсутствуют; во всех дальнейших расчетах холл-факторы считаются равными единице.

13

		T-300 K					
e _F /kT	<i>п</i> , см ⁻³	р _л , см-3	<i>р</i> _Т , см ⁻³	m _{п опт} /m _о	^{<i>mp</i>_{л опт}/<i>m</i>₀}	R _x , см³/Кул	ω _{ρ, CM} -1
-8,3	6,0.1014	2,3.1018	1,2.1018	0,063	0,077	+1,0	440
-7,8	9,6.1014	1,5.1018	7,8.10 ¹⁸	0,063	0,077	+1,5	. 360
7,3	1,6.1015	9,5.1017	4,9·10 ¹⁸	0,064	0, 0 76	+2,4	280
-6,8	2,7.1015	6,0.1017	3,0-10 ¹⁸	0,065	0,075	+3,7	220
-6,3	4,4.1015	3,7.1017	1,8.1018	0,068	0,074	+5,5	170
5,8	7,3.1015	2,3·10 ¹⁷	1.1.1018	0,070	0,074	+7,0	130
5,3	1,2.1016	1,4.1017	6,8 1017	0,071	0,074	+2,6	110-
5,0	1,9.1016	9,5.10 ¹⁸	5,8.1017	0,073	0,073	-10	96
4,8	2,4.1016	8,5.10 ¹⁶	4,3.1017	0,073	0,073	19	87
-4,3	4,0.1010	5,1.10 ¹⁶	2,5.1017	0,073	0,073	48	73
-4,0	5,1.10 ¹⁶	4,0.10 ¹⁶	1,9.1017	0,073	0,073	56	69
3,8	6,5·10 ¹⁶	3,1.1016	1,5-1017	0,073	0,073	58	67
3,3	9,5.1016	1,9.1016	1,0.1017	0,073	0,073		68
-3,0	1,4.1017	1,2.1016	6,8 1016	0,074	0,071	41	75
2,5	2,3.1017	7,3.1015	4,6.1018	0,074	0,070	26	90
-2,0	3,7.1017	4,4.10 ¹⁵	2,8 10 ¹⁶	0,074	0,068	17	110
-1,5	6,0.1017	2,7.1015	1,8 1016	0,075	0,065	-10	140
-1,0	9,5.1017	1,6.1015	1,0.1010	0,076	0,064	-6,6	170
0	2,3.1018	6,0.1014	3,8 1015	0,077	0,063	-2,7	260
		J		1	1]		

T-300 K

Т.аблица 1 🗉

При T = 300 К необходимо учитывать влияние всех трех зон, тогда выражение для постоянной Холла примет вид

$$R_{x} = \frac{1}{e} \frac{(\mu_{p_{\pi}}/\mu_{P_{T}})^{2} p_{\pi} + p_{T} - (\mu_{n}/\mu_{P_{T}})^{2} n}{((\mu_{p_{\pi}}/\mu_{P_{T}}) p_{\pi} + p_{T} + n \mu_{n}/\mu_{P_{T}})^{2}}.$$
(8)

Здесь μ — соответствующие подвижности, причем $\mu_n/\mu_{P_A} = 3,18$, $\mu_{P_A}/\mu_{P_T} = 7,0$ [12].

В табл. 1 представлены вычисленные по формулам (2)—(8) значения $n, p_{\pi}, p_{T}, m_{\text{опт}}, R_{x}$ и ω_{p} для различных ε_{F}/kT при T=300 К (нуль отсчета энергии совпадает с дном зоны проводимости). Частоты коротковолновых смещанных плазмон-фононных мод ω_{+} вычислялись для различных значений ω_{p} без учета затухания плазмонов и фононов по методу, предложенному в [13] (ω_{LO} считалась не зависящей от температуры и равной 111 см⁻¹ [1]). Обсуждение результатов. Как видно из табл. 1, постоянная Холла

Обсуждение результатов. Как видно из табл. 1, постоянная Холла при T = 300 К оказывается неоднозначно связанной с концентрацией свободных носителей: одному значению R_x могут соответствовать два набора концентраций n, p_π и p_T . Сопоставление холловских данных с результатами измерений ИК-отражения позволяет в ряде случаев устранить эту неоднозначность. Рассмотрим для примера образец N 2табл. 2. Зависимость постоянной Холла от температуры для этого образца представлена на рис. 3.

При T = 80 К указанный образец является дырочным: ($p_{\pi} \approx 5.7 \cdot 10^{16}$ см⁻³), причем спектр отражения определяется в этом случае кристаллической решеткой ($\omega_p = 60$ см⁻¹, $\omega_{LO} = 111$ см⁻¹). С повы-

щением температуры R_x уменьшается, проходит через нуль, а при T = 300 К $R_x = -15$ см³/Кул. Этому значению R_x могут соответствовать два набора концентраций свободных носителей (см. табл. 1):

 $\begin{array}{l} n = 6,0\cdot 10^{17} \ {\rm cm}^{-3}, \ p_{\pi} = 2,7\cdot 10^{15} \ {\rm cm}^{-3}, \\ p_T = 1,8\cdot 10^{16} \ {\rm cm}^{-3}, \ \omega_p = 140 \ {\rm cm}^{-1}, \\ \omega_+ = 170 \ {\rm cm}^{-1} \ (n\text{-THII}, \ \varepsilon_F/kT = -2); \\ n = 1,9\cdot 10^{16} \ {\rm cm}^{-3}, \ p_{\pi} = 9,5\cdot 10^{16} \ {\rm cm}^{-3}, \\ p_T = 5,8\cdot 10^{17} \ {\rm cm}^{-3}, \ \omega_p = 90 \ {\rm cm}^{-1}; \\ \omega_+ = 140 \ {\rm cm}^{-1} \ (p\text{-THII}, \ \varepsilon_F/kT = -5); \end{array}$

В обоих случаях ω_p оказываются близки к $\omega_{LO} = 111$ см⁻¹. Учет плазмон-фононного взаимодействия по [13] дает величину $\omega_+ = 170$ см⁻¹ (*п*-тип) и $\omega_+ = 140$ см⁻¹ (*р*-тип); последнее значение ближе к полученному экспериментально: ω_+ экс = (115±3) см⁻¹.

Точность расчетов ω₊ при указанных выше предположениях (при́-

ближение кейновских зон, холл-факторы равны единице) составляет $\approx 30\%$, однако даже такой точности достаточно для ответа на вопрос о типе проводимости образца: несмотря на то что $R_x < 0$, образец при T = 300 К оказывается дырочным, причем концентрация тяжелых дырок значительно превышает собственную.

Подобные сопоставления R_x и $\omega_{+эксп}$, проведенные для всех исследованных образцов при T = 300 К, позволили устранить неоднозначность в определении концентрации свободных носителей по холловским данным. Результаты расчета и экспериментальные данные приведены в табл. 2. Постоянная Холла измерена при T = 80 К, а спектры

Т	а	б	л	и	ц	а	z	

№ образца	R _x , см ³ /Кул	λ _ρ , мкм	λ ₊ . мкм	^λ + эксп, мкм	п, см ⁻³	р _л , см ⁻³	<i>р</i> _Т , см ⁻³	
Т=300 К								
1 монокр. 2 монокр. 3 пленка 4 пленка 5 пленка 6 пленка 7 пленка 8 пленка	$ \begin{vmatrix} -38 \\ -15 \\ +4,0 \\ +4,8 \\ +8,6 \\ +2,7 \\ -2,6 \\ -1,8 \end{vmatrix} $	130 110 90 82 70 40 37 32	80 72 64 61 56 37 35 31	$\begin{array}{c} 83 \pm 2 \\ 87 \pm 2 \\ 80 \pm 5 \\ 65 \pm 2 \\ 45 \pm 2 \\ 46 \pm 2 \\ 31 \pm 1 \\ 37 \pm 1 \end{array}$	$1,5.10^{17}$ $1,9.10^{18}$ $2,7.10^{15}$ $9,5.10^{15}$ $7,3.10^{15}$ $1,3.10^{15}$ $2,3.10^{18}$ $3,5.10^{18}$	$\begin{array}{c} 1, 3 \cdot 10^{18} \\ 9, 5 \cdot 10^{18} \\ 6, 0 \cdot 10^{17} \\ 1, 9 \cdot 10^{17} \\ 2, 3 \cdot 10^{17} \\ 1, 2 \cdot 10^{18} \\ \hline \end{array}$	$\begin{array}{c} 6,9\cdot1016\\ 5,8\cdot1017\\ 3,0\cdot1018\\ 9,0\cdot1018\\ 1,1\cdot1018\\ 6,5\cdot1018\\ \end{array}$	
	Т=80 К			T=115 K				
1 монокр. 2 монокр. 3 пленка 4 пленка 5 пленка 6 пленка 7 пленка 8 пленка	$\begin{array}{c} -670 \\ +110 \\ +28 \\ +5,2 \\ +4,3 \\ +2,0 \\ -2,6 \\ -2,4 \end{array}$	400 170 85 41 36 27 30 28	90 90 62 37 34 27 29 28	$90 \pm 1 \\90 \pm 1 \\58 \pm 2 \\46 \pm 1 \\37 \pm 1 \\32 \pm 1 \\25 \pm 1 \\28 \pm 1$	$\begin{array}{c} 9, 3 \cdot 10^{15} \\ - \\ - \\ - \\ - \\ 2, 4 \cdot 10^{18} \\ 2, 6 \cdot 10^{18} \end{array}$	$\begin{array}{c} - \\ 5,7\cdot10^{16} \\ 2,3\cdot10^{17} \\ 1,2\cdot10^{18} \\ 1,5\cdot10^{18} \\ 3,1\cdot10^{18} \\ - \\ - \end{array}$		

 R_x ; λ_{+} эксп-экспериментальные данные, λ_p , λ_+ , n, p_n , p_T -результаты расчета.

Рис. 3. Зависимость постоянной Холла от температуры для образца № 2 (см. табл. 2) отражения — при Т=115 К, вносимая при этом ошибка не превышала 10%, что значительно меньше погрешности расчетов (≈30%). Для удобства сравнения с экспериментом в табл. 2 представлены не частоты, а соответствующие длины воли: $\lambda_{\rho} = \frac{2\pi c}{\omega_{\rho}}; \lambda_{+} = \frac{2\pi c}{\omega_{+}}$ (где c —

скорость света).

Выше уже упоминалось о том, что спектры отражения образцов с концентрациями носителей ≥ 1017 см-3 (№ 4, 6, 8) сдвигаются при охлаждении образца в сторону коротких волн. Подобный аномальный сдвиг кривых $\hat{R}(\lambda)$ для сильнолегированных образцов $Pb_{1-x}Sn_xTe$ *p*-типа ($p \ge 10^{19}$ см⁻³) с $x = 0,12 \div 0,28$ отмечался в работе [14]. Мы наблюдали смещение $R(\lambda)$ в сторону коротких волн на образцах не только р-, но и п-типа (см. рис. 1). По нашему мнению, оно связано с тем, что при охлаждении образца оптическая эффективная масса уменьшается быстрее, чем концентрация свободных носителей, так что отношение n/m_{n опт} возрастает. Например, для образца № 8:

T = 300 К, $n = 3,5 \cdot 10^{18}$ см⁻³, m_n опт = 0,079 m_0 , $\lambda_+ = 31$ мкм; T = 80 К, $n = 2,6 \cdot 10^{18}$ см⁻³, m_n опт = 0,049 m_0 , $\lambda_+ = 28$ мкм. Для образцов № 1 (*n*-тип) и № 2 (*p*-тип), у которых наблюдается сильная зависимость концентрации от температуры (см. табл. 2), спектр отражения сдвигается при охлаждении в сторону длинных волн.

Как видно из табл. 2, результаты расчета (λ₊) удовлетворительно согласуются с экспериментальными данными (д. эксп), что доказывает правомерность использования зонной модели, предложенной в [2]. для вычисления статистики свободных носителей. Сравнение холловских данных с результатами измерений ИК-отражения дает возможность определять концентрации свободных носителей в образце при комнатной и азотной температурах.

В заключение отметим одно обстоятельство, важное в практическом отношении. В работе [15] на примере системы Cd_xZn_{1-x}Te было показано, что в случае чисто решеточного отражения точки перегиба графиков R (w) соответствуют частотам оптических фононов. Для исследованных нами образцов влияние свободных носителей было существенным, однако и в этих случаях абсциссы точек перегиба графиков R(ω) в пределах ошибки эксперимента совпадали с частотами плазмонов или смешанных плазмон-фононных мод. Указанное соответствие позволяет определять частоты плазмонов и плазмон-фононных мод непосредственно из спектров отражения, не прибегая к помощи ЭВМ.

Авторы приносят благодарность В. А. Морозовой и А. Г. Миронову за ценные замечания при обсуждении результатов измерений.

ЛИТЕРАТУРА

- Белов А. Г., Рашевская Е. П., Николаев М. И., Коновалов А. А. Получение и свойства полупроводниковых соединений типа А¹¹B^{VI} и А^{IV}B^{VI} в твердых растворах на их основе. Тезисы докладов 1-й Всесоюзной научно-техни-ческой конференции. Ч. 2. М., 1977, с. 249.
 Орлецкий В. Б., Сизов Ф. Ф., Лашкарев Г. В., Товстюк К. Д. «Фи-зика и техника полупроводников», 1975, 9, 269.
 Осіо М., Аlbany Н. J. «Phys. Lett.», 1969, 30А, 169.
 Вейс А. Н., Виноградова М. Н. и др. «Физика и техника полупроводни-ков», 1974, 8, 2243.
 Melngailis I., Наттап Т. С. et al. «Bull. Amer. Phys. Soc.», 1969, 14, 330.
 Melngailis I., Наттап Т. С. et al. «Phys. Rev.», 1971, B3, 370.

- 7. Равич Ю. И., Ефимова Б. А., Смирнов И. А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS. M., 1968.
- 8. Сизов Ф. Ф., Лашкарев Г. В. и др. «Укр. физ. журн.», 1974, 19, 2063. 9. Сизов Ф. Ф., Лашкарев Г. В. и др. «Физика и техника полупроводников», 1974, 8, 2074.
- 10. Аскеров Б. М. Кинетические эффекты в полупроводниках. Л., 1970. 11. Ravich Yu. I., Efimova B. A., Tamarchenko V. I. «Phys. Stat. Sol. (b)», 1971, 43, 11.
- 12. Ohtsuki O., Shinohara K., Ryuzau O. «Jap. J. of Appl. Phys.», 1970, 9, 1180.
- Varga B. B. «Phys. Rev.», 1965, 137, 6А, 1896.
 Несмелова И. М., Барышев Н. С. и др. «Физика и техника полупровод-ников», 1975, 9, 991.
- 15. Виноградов Е. А., Водопьянов Л. К. «Краткие сообщения по физике», 1972, 11, 29.

Поступила в редакцию 20.5 1977 г. Кафедра физики полупроводников