УДК 534.12

Н. С. Виноградов, С. Ф. Некрич, Ф. В. Рожин, О. С. Тонаканов

АМПЛИТУДНАЯ СТРУКТУРА ПОЛЯ ЗВУКОВОГО ДАВЛЕНИЯ И КОЛЕБАТЕЛЬНОЙ СКОРОСТИ ВБЛИЗИ ЖИДКОЙ СФЕРЫ ПРИ ПАДЕНИИ НА НЕЕ ПЛОСКОЙ ВОЛНЫ

Задачи изучения ближних акустических полей в гидроакустике возникают в связи с расположением приемно-излучающих систем вблизи рассеивающих препятствий, каковыми, например, могут быть корпуса подводных исследовательских устройств типа батисфер. С применением ЭВМ резко увеличился класс задач, для которых могут быть получены численные решения. До последнего времени основные результаты расчетов относились к полю звукового давления [1—4]. Сейчас в гидроакустике находят применение также и приемники градиента давления или колебательной скорости частиц. Это позволяет получить дополнительную информацию о звуковом поле и его источнике.

Классическая задача дифракции плоской звуковой волны на сферическом препятствии решается как краевая задача с граничными условиями, которые выбираются в зависимости от вида границы данного препятствия [1, 2]. Рассеяние на жидкой или газообразной сфере означает непрерывность давления и нормального компонента скорости при переходе через границу сферы радиуса r_0 . Если обозначить падающую волну индексом *i*, рассеянную — индексом *s*, а давление *p* и нормальный компонент скорости q_n во внутренней среде через *p* и q_n , то граничные условия запишутся в виде

$$(p_{i} + p_{s}) \mid r_{-r_{0}} = p \mid r_{-r_{0}},$$

$$(q_{in} + q_{sn}) \mid r_{-r_{0}} = \overline{q_{n}} \mid r_{-r_{0}}.$$
(1)

Следуя работам [1, 2], запишем давление и колебательные скорости в форме рядов, разложенных по сферическим функциям:

$$p = \sum_{m=0}^{\infty} e^{i\omega t} \left[p_0 \, i^m \, (2m+1) \, P_m \, (\cos\theta) \, j_m \, (z) + A_m \, P_m \, (\cos\theta) \, h_m^{(2)}(z) \right], \tag{2}$$

$$q_{in} = -\frac{k}{i\omega\rho} p_0 e^{i\omega t} \sum_{m=0}^{\infty} i^m (2m+1) P_m(\cos\theta) \frac{\partial}{\partial z} j_m(z), \qquad (3)$$

$$q_{sn} = -\frac{k}{i\omega\rho} e^{i\omega t} \sum_{m=0}^{\infty} A_m P_m(\cos\theta) \frac{\partial}{\partial z} h_m^{(2)}(z), \qquad (4)$$

2*

где z = kr — волновой параметр, θ — угол падения волны, P_m (соз θ) — сферический полином Лежандра, h_m и j_m — сферические функции Ганкеля и Бесселя, A_m — коэффициенты разложения, определяемые из граничных условий, ω — круговая частота, t — время.

Поскольку в центре сферы акустическое поле должно иметь конечное значение, то для области внутри сферы можно записать, учитывая, что функция Неймана $n_m(0) = -\infty$:

$$\overline{p} = e^{i\omega t} \sum_{m=0}^{\infty} \overline{A}_m P_m(\cos \theta) j_m(\overline{z}), \qquad (5)$$

$$\overline{q}_{n} = -\frac{\overline{k}}{i\omega\rho}e^{i\omega t} \sum_{m=0}^{\infty} \overline{A}_{m}P_{m}(\cos\theta) \frac{\partial}{\partial z} j_{m}(\overline{z}).$$
(6)

Подстановкой разложений для p, p, q_{in} , q_{sn} , q_n в граничные условия (1) для каждого номера m находятся неизвестные коэффициенты A_m и \overline{A}_m .

Выражения (2), (3), (4) описывают звуковое давление и компоненты колебательной скорости в любой точке пространства в присутствии жидкой сферы. Каждое выражение представляет собой функцию волновых параметров kr, kr_0 , $\bar{k}r_0$ и отношения волновых сопротивлений материала и среды $R = \bar{\rho}c/\rho c$.

Вычисления по формулам (2) - (4) в зависимости от значения параметра R, углов падения θ , удаления от поверхности сферы, а также при различных значениях волнового числа k проводились на ЭВМ БЭСМ-4М.

Алгоритм расчета суммарного поля состоял в следующем.

1. По заданным значениям kr, kr_0 , kr_0 по рекуррентным формулам вычислялись последовательности функций Бесселя и Неймана разных порядков, причем функции Неймана вычислялись по прямой рекурсии, т. е. по двум известным значениям функций меньших порядков (m-1и m) находилось значение функции порядка m+1, функции же Бесселя считались по обратной рекурсии (см. например, [1]), начиная с некоторого стартового номера N, который определяется соотношением

 $(2z)^{N} N!/(2N+1)! = \varepsilon$,

где в — абсолютная погрешность результатов расчета; при этом сначала вычисляются значения вспомогательной функции $j_m^*(z)$ по формуле

$$j_{m}^{*}(z) = \frac{2m+3}{z} j_{m+1}^{*}(z) - j_{m+2}^{*}(z),$$

значения $j_m^*(z)$ связаны со сферическими функциями Бесселя соотношением

$$j_m(z) = \frac{j_m^*(z)}{j_0^*(z)} j_0(z), \ j_0(z) = \frac{\sin z}{z} .$$

2. По заданным значениям **0** вычисляются значения полиномов Лежандра разных порядков.

3. После вычисления специальных функций производилось суммирование рядов, представляющих суммарное поле звукового давления и компоненты колебательной скорости.

Погрешность при вычислении элементов поля складывается из ошибок вычисления специальных функций и остаточных членов рядов, представляющих звуковое давление или компоненты колебательной скорости. При задании $\varepsilon = 10^{-16}$ погрешность вычисления бесселевых функций не более 10^{-7} . Проведенные оценки остатков рядов дали для самого неблагоприятного случая (остаток ряда для радиального компонента колебательной скорости при $kr_0 = 10^{-2}$, m = 6) значение абсолютной погрешности не более 10^{-3} . Поскольку большинство значений давления и составляющих колебательной скорости выше 10^{-1} , относительная ошибка расчетов не более 1%.

Рис. 1. Распределение нормированных амплитуд звукового давления и компонентов колебательной скорости. Пунктир — θ° =10, штрих-пунктиг — θ° =90 и сплошная кривая — θ° =140

Изучение ближнего поля дифракции проводилось для волновых размеров сферы $10^{-2} \ll kr_0 \ll 12$ и удалений от сферы $kr_0 \ll kr \ll 50$.

Отнощение волновых сопротивлений среды и материала сферы R менялось от значений, соответствующих условиям, близким к жесткой границе, до значений, соответствующих условиям, близким к акустически мягкой границе ($30 \ge R \ge 0.25$). При этом предполагалось, что плотности среды и сферы одинаковы, а различие состоит только в окорости распространения звука, т. е. жидкая сфера имела нулевую плавучесть. Если задать различными как скорости, так и плотности сред, то это приведет к несколько иным результатам расчетов, так как в формулах (2)—(6) от скорости звука зависят аргументы специальных функций, а коэффициенты разложения A_m , \bar{A}_m зависят как от скоростей

Рис. 2. Угловое распределение акустического поля: $1 - kr_0$, $2 - kr_0 + \pi/3$ и $3 - kr_0 + 7/6\pi$

звука с и c, так и от соотношения плотностей р и р. Расчет для более общего случая не представляет особых трудностей при использовании имеющейся программы для случая разных скоростей звука.

Типичное распределение нормированных амплитуд звукового давления p/p_0 и компонентов колебательной скорости v_r и v_{θ} в зависимости от удаления $k(r-r_0)$ точки наблюдения от поверхности сферы при R=2 и $kr_0=2$ для различных углов θ приведено на рис. 1 (v_r — радиальный компонент скорости, v_{θ} — тангенциальный компонент скорости). При $\theta \rightarrow 0^{\circ}$ длины стоячих волн, образующихся при отражении падающей волны, стремятся к половине длины падающей волны ($\lambda_{cr} \rightarrow \lambda_{nal}/2$); с увеличением угла падения θ длина стоячей волны возрастает и при $\theta \to 180^{\circ} \lambda_{cT} \to \infty$. Нормированная амплитуда давления и компоненты скорости v, и v_{θ} осциллируют около своих средних значений, равных 1, $|\cos \theta | u | \sin \theta |$ соответственно. Значения полей на поверхности сферы определяются соотношением материала сферы и среды $(R = \rho c/\rho c)$, а также частотой падающей волны.

Угловое распределение акустического поля при R=2 для трех выбранных значений волнового размера сферы kr_0 и на заданных удалениях $kr_0 \leq kr \leq kr_0 + \frac{7}{6} \pi$ приведено на рис. 2. Анализ показывает,

Рис. 3. Поле на поверхности сферы $(kr = kr_0 = 2)$. a - при R = 1,05 (1), R = 1,3 (2), R = 5; 15 и 30 (3); 6 - при R = 0,9 (1), R = 0,6 (2), R = 0,5 (3); e - R = 0,3 (1), R = 0,06 (2), R = 0,1 (3)

что с ростом волнового параметра kr_0 , а также по мере удаления от поверхности сферы распределения полей давления p, радиального v_r и тангенциального v компонентов скорости приобретают многолепестковый характер. При этом наиболее резко меняются распределения p и v_r , а v_0 меняется слабее.

Существует некоторый интервал удалений от поверхности сферы, когда распределения полей близки к однолепестковым для звукового давления и двухлепестковым для компонентов колебательной скорости. Так, поле давления имеет указанный характер на поверхности сферы и удалении от нее не более чем на $\pi/6$ при $2 \leq kr_0 \leq 9.5$. Для тангенциального компонента скорости удаление не должно быть более чем $\pi/3$ от поверхности сферы при тех же значениях kr_0 . Наиболее сложную структуру имеет поле радиального компонента v_r . На поверхности сферы поле v_r имеет либо слабо выраженную направленность, либо многолепестковость при $2 \ll kr_0 \ll 9,5$. Радиальный компонент скорости сохраняет двухлепестковый вид на удалении $kr_0 + \pi/6 \ll kr \ll kr_0 + \pi/3$ при значениях $kr_0 \ll 5$.

Влияние скорости распространения звука в материале сферы на структуру ближнего поля иллюстрируется рисунком 3, где приведены

Рис. 4. Поле на осн сферы. a -при R=5; 8; 10; 30 (1), R=1,5 (2), R=1,3 (3), R=1,1 (4); $\delta -$ при R=0,5 (1), R=0,6 (2), R=0,9 (3), R=0,2 (4), R=0,06 (5), R=0,25 (6)

зависимости значений полей давления p и компонентов колебательной скорости v_r и v_{θ} на поверхности сферы от угла падения θ плоской волны на сферу, имеющую волновой размер $kr_0=2$, при $0.06 \leqslant R \leqslant 30$. Из анализа рис. З заключаем, что с уменьшением параметра R от 30 до 1.05 поле давления изменяется от однолепесткового при R=30 до слабонаправленного при R=1.05. Поле скорости v_r изменяется от малонаправленного до дипольного ($v_r \sim |\cos \theta|$), а поле v_{θ} изменяется слабо и имеет вид, близкий к $v_{\theta} \sim |\sin \theta|$. При $R \rightarrow 1$ структура полей p, v_r и v_{θ} стремится к виду поля в свободном пространстве. Следует отметить также, что при R > 5 поле звукового давления прак-

тически не изменяется, происходит насыщение (на рис. 3 кривая давления для R = 5 совпадает с кривой для R = 30).

При уменьшении R от 0,9 до 0,06 звуковое поле в функции угла θ становится изрезанным; изрезанность достигает максимума при $R \simeq 0,5$ для полей p и v_{θ} и при $R \simeq 0,3$ для поля v_r . При изменении kr_0 следует ожидать, что максимум искажения будет наблюдаться при другом значении R. Дальнейшее уменьшение R приводит к уменьшению лепестков p, v_r и v_{θ} , причем по мере приближения параметров сферы к значениям, соответствующим абсолютно мягкой границе, поля pи v_{θ} на поверхности стремятся к нулю,

а поле v_r приобретает однонаправленный характер с некоторым конечным значением v_r на поверхности сферы.

Структура поля на оси сферы при падении плоской волны вдоль оси иллюстрируется рис. 4 на примере поля давления при kro=2 и различных значениях параметра R в зоне перед $(\theta = 0^{\circ})$ препятствием И за ним $(\theta = 180^{\circ})$. Поле перед препятствиемносит осциллирующий характер функции $k(r - r_0);$ за препятствием поле имеет монотонный вид при R>1 и приближается к полю падающей волны с удалением от сферы. При R < 1 поле за препятствием может иметь минимальное значение в функции $k(r - r_0)$. Величина и положение минимума определяются параметром R.

Представляет интерес зависимость амплитуды звукового давления на поверхности сферы от волнового параметра kr_0 . Результаты расчетов для $\theta = 0^{\circ}$ (перед сферой) и $\theta = 180^{\circ}$ (за сферой) представлены на рис. 5 при R = 2 и R = 0.5.

Анализ показывает, что для препятствия с R>1 поле на поверхности в значительной мере определяет осцилляции давления перед сферой в функции удаления от нее. В этом случае поле на поверхности близко

к своему максимальному значению. На поверхности сферы и при $\theta = 0^{\circ}$ амплитуда поля носит осциллирующий характер в функции kr_0 , причем максимальные значения давления на поверхности соответствуют областям наибольшей амплитудной модуляции поля в функции удаления от поверхности. Отсюда следует, что возможны случаи, когда на более высокой частоте осцилляции в ближнем поле будут меньше, чем на частоте более низкой, но приходящейся на максимум давления на поверхности. За препятствием ($\theta = 180^{\circ}$, $r = r_0$, R = 2) рассеянная и преломленная волны интерферируют весьма сложным образом. Поле

 $1 - \theta = 0, 2 - \theta = 180^{\circ}$

давления за препятствием при R=2 в функции удаления от поверхности сферы имеет монотонный характер только для низких частот при $kr_0 \ll 5.5$.

Для препятствия с R<1 поле на поверхности сферы в функции волнового параметра kr_0 носит осциллирующий характер как перед, так и за сферой. При этом амплитуда на поверхности не определяет величину осцилляций поля в функции удаления от препятствия при $\theta = 0^{\circ}$.

В заключение отметим, что существует некоторая область значений параметра R, где амплитудные характеристики поля весьма нестабильны. Для выбранного нами параметра $kr_0=2$ эта область значений R лежит в пределах 0,06 << R << 1. Очевидно, что она будет смещаться в зависимости от величины параметра kro. Решение вопроса о ее положении, видимо, следует искать для каждой конкретно поставленной задачи, что не представляет больщого труда при использовании программ расчета на ЭВМ, разработанных при выполнении данной работы.

СПИСОК ЛИТЕРАТУРЫ

Ржевкин С. Н. Курс лекций по теории звука. М., 1960, с. 257—286.
 Нигул У. К., Метсавээр Я. А., Векслер Н. Д., Кутсер М. Э. Эхо-сигналы от упругих объектов, т. 2. Таллин, 1974, с. 31.
 Lord G. E. "Acoustica", 1971, 24, N 4, 197—204.
 Freyt H. G., Goodman R. R. JASA, 1966, 40, N 2, 417.

Кафедра акустики Поступила в редакцию 12.10.77