УДК 539.144: 539.172.4

В. Д. Авчухов, М. Р. Ахмед (Ирак), К. А. Баскова, Т. М. Бекух, А. Б. Вовк, Л. И. Говор, А. М. Демидов

СХЕМА УРОВНЕЙ ¹⁸¹Та, ВОЗБУЖДАЕМЫХ В РЕАКЦИИ (*n*, *n*'у)

В последние годы получили развитие исследования структуры атомных ядер с помощью реакции $(n, n'\gamma)$ на быстрых нейтронах реактора [1].

При непрерывном спектре нейтронов вероятность возбуждения уровня в процессе реакции $(n, n'\gamma)$ определяется интегралом $P_s = \int_{E_{nop}}^{\infty} \sigma(E_n) \Phi(E_n) dE_n$, где $\sigma(E_n)$ — сечение возбуждения уровня,

а $\Phi(E_n)$ — спектр нейтронов. При энергиях выше $E_n = 0.8$ МэВ спектр нейтронов в первом приближении можно представить зависимостью $\Phi(E_n) \approx e^{-0.7 E_n}$. Поскольку при больших E_n сечение $\sigma(E_n)$ и поток $\Phi(E_n)$ быстро уменьшаются, то возбуждение уровней осуществляется в основном нейтронами с энергией не намного превышающей E_{nop} . Средняя энергия нейтронов, возбуждающих уровень, равна $\tilde{E}_n = E_{yp} + \Delta$, где Δ зависит от атомного веса и равно ≈ 0.7 МэВ при $A \sim 100$. Энергия

 $\tilde{E_n}$ находится из условия, что величина интеграла $\int_{E_{nop}}^{\infty} \sigma(E_n) \Phi(E_n) dE_n$

равна 0,5 P_s.

В данной работе исследовался спектр γ -излучения при неупругом рассеянии быстрых нейтронов на мишени из тантала. Ранее схема уровней ¹⁸¹Та изучалась в реакциях (*p*, *p*'), (*d*, *d*'), (*n*, γ), (*n*, *n*' γ), а также при кулоновском возбуждении и β -распаде ¹⁸¹Нf и ¹⁸¹W.

В [2] приведена сводка экспериментальных результатов, позволяющих относительно полно построить схему уровней ¹⁸¹Та до энергий \approx 700 кэВ.

Исследование ¹⁸¹Та было предпринято с целью получить дополнительные данные о ү-переходах и уровнях в этом ядре.

Схема опыта и экспериментальные результаты. Эксперимент проводился в Институте ядерных исследований в г. Багдаде. Схема установки показана на рис. 1 и описана в [3]. Пучок нейтронов от водоводяного реактора после фильтрации 1 см В₄С, 0,5 мм Сd и 9 см Рb имел на мишени диаметр ≈ 30 мм. Вес мишени из Та₂O₅ был равен 20 г. Спектр у-излучения измерялся в диапазоне от 0,1 до 3 МэВ под углом 90° к пучку нейтронов с помощью спектрометра с Ge (Li)-детектором объемом 30 см³ с разрешением 4 кэВ при $E_{\chi} = 1,3$ МэВ.

На рис. 2 показан γ -спектр, измеренный нами из реакции ¹⁸¹Та $(n, n'\gamma)$. На спектре указаны энергии γ -линий, принадлежащих ¹⁸¹Та. Из спектра выделена 71 γ -линия, причем 40 из них обнаружено впервые.

На рис. З приведена схема известных уровней ¹⁸¹Та и указаны идущие с них и выделенные нами из спектра у-переходы. На рисунке справа указаны энергии уровней по данным обзора [2], по исследованию реакции (n, γ) [2, 4] и определенные из энергий обнаруженных нами у-переходов [5].

Между известными уровнями удалось разместить только незначительную часть γ -линий из реакции (*n*, $n'\gamma$). Рассматривая совпадение разности энергий γ -переходов с разностями в энергиях первых четырех уровней ¹⁸¹Та, мы предположили существование еще 11 уровней этого ядра.

В табл. 1 приведены энергии этих уровней и соответствующие у-переходы (E_{γ}) и их интенсивности (I_{γ}) . В таблице даны энергии (E_{fyp}) и характеристики (J_f^{π}) конечных уровней для этих переходов. В последней колонке представлены экспериментальные величины заселяемостей уровней P_s (90°). Величины P_s являются разностями сумм интенсивностей уходящих и приходящих у-переходов с учетом конверсии.

Таблица 1

Е _{і ур} , кэВ	Е _ү , кэВ	I ₁ , отн. ед.	Е _{f ур} , кэ <u>В</u>	J_f^{π}	P _s (90°)
886,4(3)	886,2(3)	0,8(2)	0	7/2+	1,3
988,4(2)	880,5(4) 988,4(2) 686,4(5)	2,0(6)	0 0 301 4	9/2 7/2+	2,2
1091,0(4)	1090,5(4) 7897(2)	0,20(4) 0,32(6) 0.8(2)	0 301.4	7/2+ 11/2+	1,1
1349,2(3)	1342,0 (10)	$\leq 0,4(1)$ 1.7(3)	6,2 136.2	9/2 9/2+	≤ 2,1
1381,2(3)	1244,8(2) 1079,9(3)	1,8(3) 1,9(4)	136,2 301.4	9/2+ 11/2+	3,7
1432,9(3)	1426,7 (3) 1274,8 (10)	2,6 (6) 0,38 (9)	6,2 158,7	9/2 11/2	3,0
1616,5(10)	1616,5(10) 1609,9(6)	$0,4(1)$ $\leq 0,5(1)$	0 6,2	7/2+ 9/2-	≤ 0,9
1636,7 (10)	1636,7 (10) 1336,3 (10)	$0,5(1) \le 0,5(1)$	0 301,4	7/2+	< 1,0
1643,3(10)	1643,3(10) 1342,0(10)	$0,5(1) \le 0,4(1)$	0 301,4	7/2+ 11/2+	≪ 0,9
1746,1 (6)	1746,3 (10) 1609,9 (6)	0,5(1) < 0,5(1)	0	7/2+ 9/2+	≼ 1,6
1769,4(10)	1444,2(10) 1763,2(10) 1609,9(6)	$\begin{vmatrix} < 0, 6(2) \\ 0, 4(1) \\ < 0, 5(1) \end{vmatrix}$	301,4 6, 2 158,5	$ \begin{array}{c c} 11/2+\\ 9/2-\\ 11/2-\\ \end{array} $	≤ 0,9

Новые уровни ¹⁸¹Та, их заселение в реакции (n, n'y) и разрядка

В табл. 2 приводится список ү-линий, не размещенных в схеме уровней ¹⁸¹Тэ. (рис. 3) и не вошедших в табл. 1.

Экспериментальные заселяемости уровней P_s сравнивались с рассчитанными по статистической модели с применением формализма Ха-

5 ВМУ, № 1, физика, астрономия

543,0(3) 495,2(4) 482,10(10) - 158,73(10) - 136,25(10) 1403,5(2) -1024,3(7) 773, 6(5) 716,5(4) 613 0 ر) [3] s į 130740 1239,34 1231,9 -1028,04 1554,4 1539,25 1403,39 542,50 495,11 337,52 301,51 - 965,00 772,97 168,57 136,11 1471,5 716,59 1659,5 0 0 0 (n, X)[2,4] ţ 158,7 136,11 339,1 301,4 716.6 - 1390 619,0 1230 548, 495,1 482,1 6,2 0,2 0630p[2] i 136,25 (127) 136,25 (127) 165,14(38) 172,25 (19) 172,120 174,120 174, 12(2) 12(2) 12(2) 12(1(1) 12(1(1) 12(1) 181 Ta 810)1'682 (1'1)8'894 (1'1)8'894 1281°C (0'4) 1284°°B (1**'8)** % % 9/2 — 2 32 9/2 7/2 32 × 18/2+ 3/2+1 3/2+1 3/2+2 3/2+1 3/2+1 3/2+1 3/2+1 17/2 15/2⁺ 19/2 (3/2⁺) (13/2 22

узера—Фешбаха [6] и Мольдауера [7]. Для расчетов необходимо знать полную систему уровней ядра или относительный ход плотности уровней при различных J^{π} . Полных данных для таких расчетов обычно нет. Зависимость P_s от энергии уровней с заданным J^{π} должна определяться в основном ростом плотности уровней и экспоненциальным спадом интенсивности нейтронов в спектре реактора. Рост плотности уровней следует закону:

$$\rho(E^*) = 0.0165 A \exp[0.0165 A(E^* - E_0)],$$

где E_0 — параметр, учитывающий наличие энергетической щели вблизи основного состояния из-за спаривания нуклонов [8].

Величина P_s согласно предсказаниям статистической модели зависит от J^* и не зависит от природы уровней.

Т	a	б	л	К	ц	а	2
---	---	---	---	---	---	---	---

	Неразмеш	енные у-переходы	¹⁸¹ Ta
Е, кэВ	<i>I</i> ₁ , отн. ед.	<i>Е</i> ₁ , кэВ	I ₇ , отн. ед.
$\begin{array}{c} 211,6(2)\\ 224,0(5)\\ 237,9(3)\\ 245,4(3)\\ 259,1(2)\\ 288,48(10)\\ 330,3(3)\\ 375,6(2)\\ 450,9(6)\\ 455,3(5)\\ 530,3(5)\\ 541,4(8)\\ 545,1(4)\\ 623,3(4)\\ 638,9(4)\\ 704,8(10) \end{array}$	$\begin{array}{c} 2,4(4)\\ 2,0(4)\\ 1,5(3)\\ 1,6(3)\\ 4,6(9)\\ 5,5(9)\\ 2,4(5)\\ 0,9(4)\\ 0,6(2)\\ 1,8(4)\\ 0,22(5)\\ 1,6(3)\\ 0,42(8)\\ 0,58(9)\\ 2,7(4)\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c} 0,6(2)\\ 0,30(9)\\ 0,50(15)\\ 1,0(3)\\ 1,0(3)\\ 0,43(9)\\ 0,5(1)\\ 1,7(3)\\ 2,1(4)\\ 1,1(2)\\ 1,1(2)\\ 1,1(2)\\ 1,9(4)\\ 0,8(2)\\ 0,43(13)\\ 0,26(9)\\ \end{array}\right $
		1	

Как мы уже указывали, в ¹⁸¹Та система уровней относительно полно известна только до энергии 0,7 МэВ. Для проведения расчетов мы искусственно вводили уровни при более высоких энергиях так, чтобы их плотность удовлетворяла указанному выше закону $\rho(E^*)$. Расчеты проводились с оптическим потенциалом при следующих параметрах: радиусы действительной и мнимой части потенциала принимались равными соответственно $R_0 = 1,27$ и $R_{op} = 1,24$ при значениях диффузности действительной и мнимой части потенциала $a_0 = 0,66$ и $a_{op} = 0,48$. Глубина потенциальной ямы принималась равной 47 МэВ. Из проведенных расчетов заселяемости уровня 136 кэВ определялась энергия нейтро-

нов E_n , при этом величина Λ для ¹⁸¹Та получилась равной 0,6 МэВ. Теоретические зависимости P_s от E_{yp} для определенных J^* представлены в полулогарифмическом масштабе на рис. 4 сплошными линиями. Эти зависимости получены с учетом только известных уровней ¹⁸¹Та. На том же рисунке приведены экспериментальные значения заселяемости уровней P_s . Для сопоставления экспериментальных значений заселяемостей P_s уровней ¹⁸¹Та с расчетными они приравнивались для:

5*

67

уровня 301,4 кэВ с $J^{\pi} K = 11/2^+$ 7/2. Значения P_s и P_{μ} приведены для ряда уровней ¹⁸¹Та в таблице 3.

В работах [9, 10] обнаружено заметное отклонение абсолютных значений экспериментальных сечений от предсказаний статистической модели в области $A \sim 70-80$ (Ge, Se). Более резкие отклонения по-

лучены для ¹⁵²Sm [11].

В связи с этим представляется интересным не только сравнить относительные значения P_s и $P_{\rm M}$ для различных уровней, но и установить абсолютную величину заселяемости уровней ¹⁸¹Та или эквивалентную ей

Рис. 4. Относительные заселяемости уровней P_s ¹⁸¹Та в реакции $(n, n'\gamma)$. У сплошных кгивых указаны моменты уровней, для которых проведен расчет P_M . Моменты уровней указаны у экспериментальных точек P_s . Черные точки — момент неопределенен

величину — сечение возбуждения уровней при $E_n = E_{yp} + \Delta$ (при средней эффективной энергии нейтронов, возбуждающих уровень). Абсолютные величины можно найти путем сравнения с сечением возбуждения уровня 847 кэВ ($J^{\pi} = 2^+$) изотопа ⁵⁶Fe, для которого заселенность определена с хорошей точностью и совпадает с расчетной [12]. Для этого был измерен γ -спектр неупругого рассеяния нейтронов от образца, содержащего смесь 9,74 г тантала и 3,22 г железа. В измеренном γ -спектре определено отношение интенсивности I_{τ} (Fe) (в процентах) γ -линии энергии $E_{\tau} = 482$ кэВ ¹⁸¹Та к γ -линии $E_{\tau} = 847$ кэВ ⁵⁶Fe при равном содержании числа ядер элементов тантала и железа в образце. Для ¹⁸¹Та I_{τ} (Fe) равно 160(50). Это позволило определить величину абсолютного сечения возбуждения уровней ¹⁸¹Та, прокалиброванного по известному сечению возбуждения уровня 847(2+) ⁵⁶Fe.

В табл. З приведены отношения полученных таким образом абсолютных величин заселяемостей уровней ¹⁸¹Та к рассчитанным по статистической модели — $P_s^{\rm a6c}/P_{\rm M}$. (Заселяемость P_s со значком «звездочка» указывает, что учтены конверсия или обнаруженные в других реакциях у-переходы.) Как видно из таблицы, эти отношения для уровней ¹⁸¹Та значительно больше единицы. Для уровней 136 и 158 кэВ абсолютные экспериментальные заселяемости в 6 раз превышают расчетные. Для исключения возможных ошибок, связанных с неточным знанием зависимости потока Φ от энергии нейтронов в области энергий <1 МэВ, были сделаны контрольные опыты. С этой целью были измерены отношения заселяемостей уровней сферических ядер ⁴⁷Ti (159,5 7/2⁻; 1252,2 9/2⁻) н ⁴⁸Ti (983,5 2⁺), а также определена заселяемосте

Е _{ур} , кэВ	J^{π}	к	Р ₅ , отн.	Р _М , отн.	pacc./p
$\begin{array}{c} 136,25(10)\\ 158,48(10)\\ 301,39(10)\\ 337,7(2)\\ 482,09(10)\\ 495,2(3)\\ 542,9(3)\\ 619\\ 716,5(4)\\ 773,3(4)\\ 926,0(2)?\\ 964,3(3)\end{array}$	$\begin{array}{c} 9/2+\\ (11/2-)\\ 11/2+\\ (13/2-)\\ 5/2+\\ 13/2+\\ 15/2-\\ (3/2+)\\ 15/2+\\ 17/2-\\ 17/2-\\ 17/2+ \end{array}$	7/2 9/2 7/2 9/2 5/2 7/2 9/2 1/2 7/2 9/2 7/2 9/2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	161 98 80 34 78 29 12 38 9,4 4,0 3,1	6.7 6.1 4.6 3.3 7.3 3.3 3.0 1.2 1.6
$P_s/P_M = 1$ для ⁵⁶ Fe $E_{yp} = 847(2+)$ кэВ					

Экспериментальные (P_s) и расчетные (P_M) значения заселяемости уровней ¹⁸¹Та в реакции (n, n'_{Y})

мость этих уровней относительно сечения возбуждения уровня 847 кэВ ⁵⁶Fe. Энергия уровня ⁴⁷Ti близка к энергии уровня 136 кэВ ¹⁸¹Ta.

Отношение экспериментального сечения возбуждения для указанных уровней⁴⁷Ті и ⁴⁸Ті к расчетному оказалось порядка единицы. Отношение экспериментальных заселяемостей уровней 159,5 кэВ ⁴⁷Ті и 983,5 кэВ ⁴⁸Ті равно 1,84, а расчетное равно 1,61. Следовательно, неточности в определении потока при E < 1 МэВ существенной роли не должны играть. В проведенном контрольном опыте осталось неучтенным различие в величине Δ для изотопов титана и тантала. Однако это отличие невелико, так как для ^{47, 48}Ті $\Delta = 0,9$ МэВ.

Влияние многократного рассеяния нейтронов в мишени на измеряемый γ -спектр в реакции $(n, n'\gamma)$ проверялось путем сравнения интенсивности γ -линии 136 кэВ ¹⁸¹Та в зависимости от веса мишени. При измерениях интенсивности этой γ -линии с мишенями весом 9,74 и 4,626 г она изменилась пропорционально отношению весов.

При рассмотрении заселяемости самых нижних уровней необходимо учитывать их каскадную заселяемость. Каскадная заселяемость их складывается из трех частей. Первая часть определяется каскадными переходами из составленной схемы γ -переходов. Во вторую часть могут входить обнаруженные, но неразмещенные нами γ -переходы (см. табл. 2). Суммарная интенсивность этих переходов составляет 44. Если предположить, что все они идут на нижние два уровня, величина P_s их существенно не уменьшится. Третья часть каскадной заселяемости обусловлена малоинтенсивными, не выделенными нами из спектра γ -переходами, идущими с очень большого числа неизвестных пока высоколежащих уровней. Величину суммарной интенсивности для необнаруженных γ -переходов можно определить через суммарную заселяемость уровней с энергией выше 1,0 МэВ. Имеем

$$\Sigma P_s = \int_{1,0}^{\infty} \rho(E_i) \overline{P}_s(E_i) dE_i,$$

где $\overline{P}_s(E_i)$ — средняя заселяемость уровня энергии E_i , определяемая интегралом $\int \sigma \Phi dE_n$, а $\rho(E_i)$ —плотность уровней. Принимая $P_s(E_{yp} =$

=0.8 МэВ) =2.5, находим суммарную заселяемость $\Sigma P_s = 34$. Очевидно, в эту величину входит часть обнаруженных, но не размещенных у-переходов.

Из полученных оценок можно сделать вывод, что у-переходы с уровней энергии >1.0 МэВ существенно не изменяют заселяемость уровня 136 кэВ.

На основании результатов настоящей работы можно предположить, что, по-видимому, для самых нижних уровней деформированных ядер. к которым относится ¹⁸¹Та, не применима статистическая модель с параметрами, используемыми при расчетах заселяемости уровней сферических ядер. По нашим данным, наблюдаемые расхождения больше для нижних уровней. Исключение составляет уровень 482,1 кэВ (5/2+ 5/2), для которого найдено максимальное расхождение абсолютных расчетных и экспериментальных значений заселяемостей. Для окончательного вывода о наличии превышения экспериментальных значений заселяемостей в $(n, n'\gamma)$ -реакции над расчетными по статистической теории необходимы дальнейшие исследования, так как этот эффект не обнаружен при исследовании на ускорителях [13].

СПИСОК ЛИТЕРАТУРЫ

- Говор Л. И., Демидов А. М. Нейтронная физика, ч. 5, 1976, с. 3.
 Ellis Y. A. "Nucl. Data Sheets", 1973, 9, 319.
 Ahmed M. R., Shakarchi Kh. I. et al. "Nucl. Instr. Meth.", 1974, 117, 533.
 Mann L. G., Lanier R. G., Larsen J. T., Richards W. J. Neutron Capture Gamma-Ray Spectroscopy Proceedings Second International Symposium, 1974, p. 578.
- 5. Ахмед М. Р., аль Амили М. А., Баскова К. А., Вовк А. Б., Говор Л. И., Демидов А. М. Тезисы докладов XXVII совещания по ядерной спектроскопии и структуре ядра. Л., 1977, с. 14.

- ной спектроскопии и структуре ядра. Л., 1977, с. 14.
 6. Наиser W., Feshbach H., "Phys. Rev.", 1954, 96, 448.
 7. Moldauer P. A., "Phys. Rev.", 1961, 123, 968.
 8. Sheldon E., Rogers V. C., "Сотр. Phys. Comm.", 1973, 6, 99.
 9. Конобиевский Е. С., Мусаелян Р. М., Попов В. И., Суркова И. В. «Ядерная физика», 1971, 14, 14.
 10. Конобиевский Е. С., Мусаелян Р. М., Попов В. И., Суркова И. В. «Изв. АН СССР, сер. физ.», 1974, 38, № 1, 149.
 11. Сооре D. F., Schell M. C., Tripathi S. N., Mc Ellistrem M. T. "Phys. Rev. Lett", 1976, 37, 1126
 12. Tucker A. G., Wells J. T., Meyerhof W. E. "Phys. Rev.", 1965, 137B, 1181.
 13. Rogers V. C., Beghian L. E., Clikeman F. M., Mohoney F. S. "Nucl. Phys.", 1970, A144, 81.

Институт ядерных исследований. Ирак Институт атомной энергии им. И. В. Курчатова ниияф

Поступила в редакцию 27.12.77

70