ний ТЕМ, дифракционные потери которого были пренебрежимо малы. Смещение оси резонатора приводило к усложнению пространственной структуры лазерного пучка. Из приведенного на рис. З графика видно,

что генерация имела место с весьма значительным запасом по усилению, когда смещение оси даже превосходило радиус Столь сильная разъюстировка трубки. резонатора, при которой практически невозможно возбуждение устойчивых типов колебаний, свидетельствует о переходе лазера в волноводный режим генерации.

Таким образом, результаты проведенного исследования показывают, что в лазерах с малым диаметром газоразрядной трубки переход от генерации на модах устойчивого резонатора к волно-

Рис. 3. Зависимость запаса по усилению А от величины смещения h оси резонатора

водному режиму генерации может быть обусловлен как увеличением радиуса собственной моды, так и разъюстировкой системы. При этом в отличие от генерации на модах устойчивого резонатора нарушение соосности приводит к усложнению пространственной структуры дазерного пучка.

СПИСОК ЛИТЕРАТУРЫ

- 1. Smith P. W. "Appl. Phys. Lett.", 1971, 19, 132. 2. Degnan J. J. "J. Appl. Phys.", 1976, 11, 1. 3. Гончуков С. А. и др. «Квантовая электроника», 1975, 2, 406. 4. Касельский В. А., Остапенко Е. П., Рябов А. И., Степанов В. А.
- Касельский В. А., Остапенка Е. П., Рябов А. И., Степанов В. А. «Квантовая электроника», 1976, 3, 1821.
 Гончуков С. А., Корнилов С. Т., Проценко Е. Д. «Квантовая электро-ника», 1976, 3, 18.
 Degnan J. J., Hall P. R. "IEEE J. Quant. Electr.", 1973, 9, 901.
 Kogeinik H., Li T. "Proc. IEEE", 1966, 54, 1312.

Кафедра оптики и спектроскопии Поступила в редакцию 02.12.77

УДК 621.318.1: 538.22.082.78

О. С. Галкина, Л. В. Лазарева, Т. М. Швец, А. С. Шитова

МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ВЫСОКОДИСПЕРСНОГО ЖЕЛЕЗА

Проведено исследование концентрационных зависимостей магнитных характеристик высокодисперсного железа. Исходные образцы представляют собой порошки, состоящие из отдельных частиц, анизотропных по форме, разделенных на монокристаллические «блоки» с размерами, близкими к однодоменным. Порошки изготовлены в Институте коллоидной химии АН УССР электролизом в двухслойной ван-

78

не на вертикально вращающемся дисковом катоде по методу [1]. Высокодисперсное железо обычно бурно окисляется на воздухе. Использованная методика позволяет избежать окисления частиц. Двухслойная ванна представляет собой электролизер, в котором электролитом служат водные растворы солей выделяющегося металла — обычно хлориды. Над электролитом наливают слой органической жидкости с примесью поверхностно-активного вещества (ПАВ) — чаще всего, олеиновой кислоты. Анод выполнен из железа-армко, катод --- никелевый. На части поверхности катода, находящейся в электролите, при наложении электрического поля образуются микрокристаллы железа (размером от десятых долей микрометра до 1-2 мкм), поверхность которых хемосорбирует молекулы ПАВ. Вся частица покрывается защитной оболочкой толщиной 1-5 нм, предохраняющей металл от окисления. По химическому составу защитный слой — это олеат железа, являющийся диамагнетиком. У высокодисперсных частиц поверхность сильно развита и составляет от 10 до 80 м² на грамм порошка. Поэтому даже при небольших толщинах оболочек объем диамагнитной фазы порошка может быть значительным, что приводит к существенному уменьшению концентрации магнитной фазы C_m в них. Однако известно, что магнитные свойства высокодисперсных магнетиков зависят как от размера и магнитных свойств исходных частиц, так и от концентрации магнитной фазы в образцах [2—4]. Варьируя электрохимические параметры режима электролиза, по методу [1] можно получить высокодисперсные ферромагнитных металлов и сплавов, которые будут отлипорошки чаться как по размеру частиц, так и по концентрации магнитной фазы. Такие порошки являются хорошими объектами для исследования магнитных характеристик высокодисперсных магнетиков и установления их связи со структурой исходных частиц. При исследовании высокодисперсных магнетиков нужно, кроме того, учитывать, что все магнитные свойства в них будут зависеть не только от концентрации магнитной фазы C_m в исходном порошке, но и от плотности упаковки частиц в образце C_M . Поэтому сравнение свойств таких объектов даже с одинаковым С_т нужно вести при одинаковой плотности упаковки частиц [5]. Ёсли в порошках не было бы инородных включений (в виде защитных оболочек частиц и возможных окисных примесей), т. е. C_m=100%, то плотность упаковки частиц С_M совпадала бы с концентрацией порошка в образце С, рассчитываемой по формуле

$$C, \ \% = \rho_{\rm obpas} / \rho_0 \cdot 100, \tag{1}$$

где $\rho_{oбраз}$ и ρ_0 — соответственно плотность образца и плотность материала частиц. В реальных порошках $C_m < 100\%$ и плотность упаковки ферромагнитных частиц в образце с хорошей степенью точности может быть оценена как

$$C_M, \ \% = \frac{I_{s'}}{I_{s^{\,9T}}} \cdot 100,$$
 (2), [6]

где $I_{s \, o \delta p a 3}$ — намагниченность насыщения реального порошка, находящегося в образце при концентрации C = const, а $I_{s \, 3 \, 7}$ — намагниченность насыщения материала частиц. Таким образом, для исследуемых порошков железа плотность упаковки будет определять концентрацию металлической фазы C_M в образце, общая концентрация порошка в котором равна C, а концентрация магнитной фазы в исходном порошке — C_m . Поэтому, очевидно, что все магнитные характеристики высокодисперсных ферромагнитных металлов будут зависеть как от общей концентрации образцов C, так й от плотности упаковки металлической фазы C_M в них.

Исследование концентрационной зависимости проводится по разработанной в МГУ методике [6]. Магнитные характеристики — кривые начального намагничивания, петли гистерезиса, коэрцитивная сила H_c , намагниченность насыщения I_s и остаточная намагниченность I_r , снимаются на высокочувствительном вибрационном магнитометре. Измерения ведутся при C = const Bдиапазоне концентраций для высокодис-

Рис. 1. Концентрационные зависимости намагниченности насыщения высокодисперсного железа для порошков с C_m : 1 - 70.5; 2 - 40.2 и 3 - 34.6%. $C_m = 100\% - 312.00\%$

персного железа $C \sim 2-50\%$. Кривые начального намагничивания и петли гистерезиса при каждом значении концентрации C строятся в функции истинного поля H_1

$$H_i = H_e - N_e I_s, \tag{3}$$

где H_e — внешнее магнитное поле, а N_e — внешний размагничивающий фактор образца, который рассчитывается исходя из реальной геометрии образца. Расчет N_e ведется по таблицам Осборна [7].

Источником внешнего магнитного поля служит электромагнит ФЭЛ-1 с плавной регулировкой поля от 0 до 15 кЭ. Все измерения проведены при комнатной температуре. В качестве объектов исследования выбрано три порошка железа с различным исходным содержанием магнитной фазы C_m в них. № 1 — $C_m = 70,5\%$, № 2 — $C_m = 40,2\%$, № 3 — $C_m = 34,6\%$. Для всех порошков снимались зависимости вида K = f(C), где K — магнитный параметр, а C — концентрация порошка в образце. Зная концентрацию C_m в исходных порошках, все измеренные зависимости можно перестроить в зависимости вида $K = f(C_m)$, где C_m — плотность упаковки металлических частиц в образце.

На рис. 1 приведены зависимости $4\pi I_s = f(C)$ для трех порошков. Для всех порошков эти зависимости в области измеренных нами концентраций носят линейный характер, что позволяет проводить их экстраполяцию на C = 100%. Видно, что величина намагниченности насыщения, приведенная к значению C = 100%, прямо пропорциональна концентрации магнитной фазы в исходном порошке. Эта закономерность используется нами при расчетах C_m . Величина C_m определяется как $C_m, \gamma_o = (I_{s\,100}/I_{s\,9T}) \cdot 100$, где $I_{s\,100}$ —намагниченность насыщения при C = 100%, а $I_{s\,9T}$ — намагниченность насыщения материала частиц (для железа табличное значение $4\pi I_s = 21400$ Гс). Перестройка зависимости вида $4\pi I_s = t(C)$ в зависимость $4\pi I_s = f(C_M)$ дает эталонную прямую, идущую из начала координат к значению $4\pi I_{s9T}$. Кривые начального намагничивания и петли гистерезиса носят такой же характер, как у массивных ферромагнетиков. Однако у высокодисперсного железа при увеличении плотности упаковки сильно растет крутизна начальных участков кривых намагничивания. Коэрцитивная сила падает с ростом плотности упаковки. Совокупность этих закономерностей приводит к сильному изменению формы петель гистерезиса.

На рис. 2 показано, как меняются петли гистерезиса при изменении плотности упаковки частиц для образца № 1 ($C_m = 70,5\%$). В выбранном масштабе построения петель гистерезиса трудно проследить за характером изменения коэрцитивной силы. На рис. 3 приведены графики зависимости коэрцитивной силы H_c от концентрации порошка в образце C и плотности упаковки частиц железа C_M для образцов 1—3. У всех образцов характер зависимости $H_c = f(C)$ соответствует

Рис. 2. Петли гистерезиса для образца N° 1 высокодисперсного железа, снятые пги разных плотностях упаковки C_M : 1-28,6; 2-21,4; 3-14,3; 4-7,1 и 5-1,9%

Рис. 3. Концентрационные зависимости коэрцитивной силы для порошков с C_m : 1 н 1a — 70,5; 2 н 2a — 40,2; 3 н 3a — 34,6%

общепринятым теоретическим представлениям, разработанным Е. И. Кондорским [2], по которым коэрцитивная сила порошков с вытянутыми частицами с ростом плотности упаковки изменяется по закону

$$H_{\rm c} = H_{\rm c0} \left(1 - k_0 C_M \right) + {\rm const},$$
 (4)

где первый член представляет собой часть коэрцитивной силы, обусловленной анизотропией формы частиц, а член

$$k = \frac{4}{3} \pi^2 \frac{N_a + N_b}{N_a N_b} \tag{5}$$

определяет эффективный размагничивающий фактор. Здесь N_a и N_b размагничивающий фактор изолированной частицы вдоль длинной и короткой осей. Большая разница в величине коэрцитивной силы у по-

рошка 1 и 2—3 может быть обусловлена двумя причинами: большой разницей концентраций магнитной фазы в исходных порошках и разницей в структурных характеристиках частиц — анизотропии формы, размерами монокристальных блоков и плотностью дислокаций. Поэтому для точной интерпретации характера зависимости $H_c = f(C)$ необходимо провести комплексные магнитные и структурные исследования.

Проведенные исследования показали, что все основные магнитные характеристики высокодисперсного железа зависят как от концентрации магнитной фазы в исходных порошках, так и от плотности упаковки частиц железа.

СПИСОК ЛИТЕРАТУРЫ

1. Натансон Э. М. Коллоидные металлы. Киев, 1959.

1. Гатансон Э. М. Коллондные металлы. Кнев, 1959. 2. Кондорский Е. И. «Изв. АН СССР, сер. физич.», 1952, 16, № 4, 398. 3. Smaller P., Newman J. J. "IEEE Trans. Magnetic", 1976, 6, N 4, 804. 4. Иванов О. А., Ермаков А. Е., Шур Я. С. «Физика металлов и металлове-дение», 1972, 33, № 4, 752. 5. Галкина О. С., Лазарева Л. В., Швец Т. М. «Порошковая металлургия»,

1977, № 6, 14.

6. Галкина О. С., Захарова Н. Н., Лазарева Л. В. «Заводская лаборатория», 1976, № 10, 1191.

7. Osborn J. A. "Phys. Rev.", 1945, N 11, 351.

Кафедра магнетизма

Поступила в редакцию 05.06.77

УДК 535.36

С. В. Кирьянов

ФУНКЦИЯ КОРРЕЛЯЦИИ ПРОСТРАНСТВЕННЫХ ФЛУКТУАЦИЙ СВЕТА, РАССЕЯННОГО НЕМАТИЧЕСКОЙ ФАЗОЙ ЖИДКОГО КРИСТАЛЛА

Исследованию статистических свойств света, рассеянного жидким кристаллом (ЖК) уделяется в настоящее время большое внимание. Этот интерес вызван, с одной стороны, широким использованием жидких кристаллов в качестве всевозможных оптических преобразователей (см. [1]) и, с другой, большими возможностями методов оптической спектроскопии при исследовании процессов, происходящих в жидком кристалле [2, 3].

В данной работе вычислена корреляционная функция флуктуаций электрического компонента света, рассеянного нематической фазой ЖК. Из приводимых ниже результатов следует, что:

1. Когерентные свойства света, рассеянного нематическим ЖК (НЖК), сильно отличаются от свойств света, рассеянного изотропной фазой ЖК (ИЖК), которые исследовались в работе [4].

82