90

С. М. ГОЛЫНСКИЙ, Н. П. ОВЧИННИКОВА

ИНДИКАТРИСА РАССЕЯНИЯ ЛУЧЕЙ В ПЛОСКОСЛОИСТОЙ ИЗОТРОПНОЙ СРЕДЕ С АНИЗОМЕРНЫМИ НЕОДНОРОДНОСТЯМИ

Статистическое описание рассеяния волн в случайно-неоднородной среде типа ионосферы может быть проведено при помощи известной в теории броуновского движения схемы, опирающейся на исследование уравнения Эйнштейна — Фоккера [1, 2]. Используя эту статистическую схему, авторы в [3] получили решение уравнения Эйнштейна — Фоккера $V(\chi, \psi/\zeta)$, характеризующее вероятность того, что луч, прошедший в рассеивающей среде путь ζ , имеет направление, определяемое координатами $\chi=\theta-\theta_0$ и $\psi=\phi-\phi_0$. Флуктуации полярного θ и азимутального ψ углов рассматриваются относительно траектории, описываемой законом Снеллиуса

$$n_0 \sin \theta_0 = \sin \theta_{00}, \ \phi_0 = 0,$$

где $n_0(z)$ — показатель преломления, характеризующий регулярную рефракцию среды, а θ_{00} — начальный угол падения.

Настоящая работа посвящена теоретическому анализу параметров индикатрисы рассеяния лучей на выходе из линейного ионосферного слоя, рассеивающие неоднородности которого имеют вид эллипсоидов вращения. Согласно многочисленным экспериментальным данным, например [4, 5], полагаем, что рассеивающие неоднородности вытянуты вдоль магнитных силовых линий Земли.

При исследовании рассеяния лучей в рефрагирующей среде целесообразно перейти от переменной θ к переменной $\xi = \ln tg(\theta/2)$ [6]. Поэтому в дальнейшем вместо χ будем использовать переменную $\eta = \xi - \xi_0$, где $\xi = \ln tg(\theta_0/2)$.

Индикатриса рассеяния определяется сечением равной вероятности $V_0(\eta, \psi/\zeta) = \text{const.}$ Согласно [3], уравнение индикатрисы рассеяния имеет вид

$$\sigma_{\mu}^{2}\eta^{2} + \sigma_{\mu}^{2}\psi^{2} - 2R\sigma_{\eta}\sigma_{\psi}\eta\psi = \text{const}, \qquad (1)$$

где σ_{η}^2 и σ_{ψ}^2 — дисперсии флуктуаций переменных η и ψ , а R — коэффициент корреляции между этими переменными. Уравнение (1) описывает эллипс, вписанный в прямоугольник со сторонами $2\sigma_{\eta}$ и $2\sigma_{\psi}$. Полуоси характеристического эллипса (1) равны

$$\sigma_{1,2} = \left\{ \frac{1}{2} \left[\sigma_{\eta}^{2} + \sigma_{\psi}^{2} \pm \sqrt{(\sigma_{\eta}^{2} - \sigma_{\psi}^{2})^{2} + 4R^{2}\sigma_{\eta}^{2}\sigma_{\psi}^{2}} \right] \right\}^{1/2}$$

а степень его вытянутости $e = \sigma_1/\sigma_2$.

Ориентация индикатрисы рассеяния определяется соотношением

$$\operatorname{tg} 2\varphi_{\mathfrak{s}} = \frac{2R\sigma_{\eta}\sigma_{\psi}}{\sigma_{\eta}^2 - \sigma_{\psi}^2},$$

причем угол ф₉ отсчитывается от оси η, лежащей в плоскости радиотрассы, до большой полуоси эллипса против хода часовой стрелки. Для рассматриваемой модели среды при $\overline{\epsilon_1^2} = \text{const}$, где $\epsilon_1 - \phi$ луктуационная часть диэлектрической проницаемости, параметры индикатрисы рассеяния на выходе лучей из слоя могут быть записаны в виде [3]

$$\sigma_{\eta}^{2} = \overline{\varepsilon_{1}^{2}} \frac{z_{0}}{a} \frac{\sqrt{\pi}}{\sin \theta_{00}} I_{1}(\alpha, \beta, \theta_{00}, e), \ \sigma_{\psi}^{2} = \overline{\varepsilon_{1}^{2}} \frac{\sqrt{\pi} z_{0}}{a} I_{2}(\alpha, \beta, \theta_{00}, e),$$
$$R = I_{3}(\alpha, \beta, \theta_{00}, e),$$

где I_i (i=1, 2) — достаточно громоздкие функции, для которых справедливы соотношения

$$I_{i}(\pi + \beta) = I_{i}(\pi - \beta) = I_{i}(-\beta) = I_{i}(\beta),$$

$$I_{s}(\pi + \beta) = I_{s}(-\beta) = -I_{s}(\beta),$$

$$I_{i}(\pi - \alpha) = I_{i}(\alpha), I_{s}(\pi - \alpha) = -I_{s}(\alpha).$$
(2)

Здесь α — угол между направлением магнитных силовых линий и вертикалью к поверхности Земли в области отражения волны $(1 = (\pi/2 - \alpha) -$ угол магнитного наклонения); β — азимут радиотрассы, который, если смотреть в направлении вертикали, отсчитывается от плоскости магнитного меридиана по ходу часовой стрелки; e — отношение полуосей эллипсоидов вращения.

Результаты вычисления функций I_i (i=1, 2) на ЭВМ при фиксированных значениях α и β (θ_{00} — начальный угол падения) приведены в таблицах. Величина параметра *е* выбрана в соответствии с экспериментальными данными [4, 5]. Полученных данных оказывается достаточно, чтобы выявить основные закономерности изменения \hat{e} и φ_3 при произвольном выборе определяющих их параметров.

В табл. 1 приведены значения степени вытянутости индикатрисы рассеяния ê. Из анализа результатов вытекает, что параметр ê существенно зависит от степени вытянутости реальных неоднородностей е. Эта зависимость проявляется наиболее ярко в на трассах полярной области (a=0°), а также при распространении волны в плоскости, перпендикулярной магнитному меридиану (β=90°). На этих трассах степень вытянутости индикатрисы рассеяния возрастает при увеличении угла падения волны θ_{00} , причем на геомагнитном экваторе ($\alpha = 90^{\circ}$) при $\beta = 90^{\circ}$ имеет место равенство $\hat{e} = e$. На геомагнитном полюсе ($\alpha = 0^{\circ}$) параметр \hat{e} не зависит от азимута радиотрассы.

В приполярной области при отклонении трассы от плоскости магнитного меридиана \hat{e} возрастает, в то время как в средних широтах и над геомагнитным экватором при увеличении β степень вытянутости при углах падения $\theta_{00} \ll 40^{\circ}$ первоначально уменьшается, а затем вновь увеличивается, достигая абсолютного максимума при $\beta = 90^{\circ}$. На экваториальной трассе в плоскости магнитного меридиана параметр \hat{e} уменьшается при увеличении угла падения волны на слой θ_{00} .

Значения параметра φ_{ϑ} , определяющего ориентацию индикатрисы рассеяния относительно плоскостей радиотрассы, приведены в табл. 2. Полученные результаты приводят к выводу, что ориентация индикатрисы практически не зависит от степени вытянутости неоднородностей *е*. При распространении волны над геомагнитным полюсом, а также в плоскости магнитного меридиана большая ось индикатрисы

гаолица	aı
---------	----

; =const		e = 10					e = 5					
θ ₀₀ , град	β, град	α, град										
		0	.20	40	60	90	0	20	40	60	90	
10	0 30 60 90	3,23 3,23 3,23 3,23 3,23	1,60 1,37 2,22 3,26	1,91 1,18 2,12 3,93	2,06 1,10 2,19 5,58	2,13 1,03 2,28 10,0	1,98 1,98 1,98 1,98	1,46 1,39 1,85 2,27	1,67 1,20 1,91 2,92	1,82 1,12 2,05 3,89	1,89 1,04 2,31 5,0	
20	0 30 60 90	5,48 5,48 5,48 5,48 5,48	1,80 2,27 3,57 4,55	$1,73 \\ 1,36 \\ 2,69 \\ 4,93$	1,92 1,19 2,57 6,57	1,97 1,11 2,60 10,0	2,86 2,86 2,86 2,86 2,86	1,66 1,89 2,56 3,0	1,53 1,32 2,32 3,48	1,57 1,17 2,29 4,25	1,74 1,08 2,32 5,0	
40	0 30 60 90	8,28 8,28 8,28 8,28 8,28	6,25 6,32 7,14 7,81	1,81 2,70 4,63 8,13	: 1,66 1,67 3,77 8,66	1,77 1,36 3,40 10,0	4,16 4,16 4,16 4,16	3,33 3,52 3,97 4,17	1,65 2,17 3,45 4,35	1,47 1,53 3,02 4,65	1,54 1,33 2,85 5,0	
60	0 30 60 90	9,52 9,52 9,52 9,52 9,52	8,59 8,70 9,09 9,34	5,22 5,65 7,35 9,86	1,73 3,03 5,83 9,78	1,57 2,02 4,90 10,0	4,76 4,76 4,76 4,76	4,33 4,44 4,65 4,81	3,07 3,46 4,25 4,95	1,53 2,30 3,86 4,85	1,35 1,74 3,55 5,0	

Таблица 2

$\bar{\epsilon}_1^2 = \text{const}$		e == 10					e = 5					
θ., град	β, град	α, град										
		0	20	40	60	90	0	20	40	60	90	
10	0 30 60 90	90 90 90 90	90 62 49,5 49	90 61,5 31,5 30,5	90 61,5 18 17,5	90 90	90 90 90 90	90 69 52 50	90 68,5 32 30,5	90 69 17,5 17	90 90 0 0	
20	0 30 60 90	90 90 90 90	90 65 60 59	90 45 38 38	90 34 22 22 22	90 0 0 0	90 90 90 90	90 69 61 59,5	90 52 39 38	$90 \\ 39,5 \\ 22 \\ 21,5$	90 0 0 0	
40	0 30 60 90	90 90 90 90	90 76,5 69 66,5	90 54,5 48 47	90 31,5 27,5 26,5	90 0 0 0	90 90 90 90	90 77 69 66,5	90 56 47,5 46,5	90 34 27,5 26,5	90 0 0 0	
60	0 30 60 90	90 90 90 90	90 79 71,5 69	90 64 52 48,5	90 41 31,5 28,5	90 0 0 0	90 90 90 90	90 79 71,5 69	90 64 52 48,5	90 42 31,5 28,5	90 0 0	

92

перпендикулярна плоскости радиотрассы. При увеличении α и β параметр фо убывает, причем скорость убывания уменьшается при увеличении угла падения волны на слой θ_{00} . На экваториальных трассах характеристический эллипс, который при β=0 вытянут поперек направления распространения, при увеличении азимута радиотрассы первоначально вырождается в окружность, а затем начинает вытягиваться вдоль направления распространения.

Учитывая соотношения (2), можно обобщить полученные результаты для радиотрасс, азимут которых превышает 90°.

Результаты настоящей работы могут быть использованы для получения радиометодами информации о параметрах ионосферных неоднородностей, например, степени их вытянутости или же величины отклонения, направления вытянутости реальных неоднородностей от магнитных силовых линий Земли.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рытов С. М. Введение в статистическую радиофизику, т. 1. М., 1976. 2. Кляцкин В. И. Статистическое описание динамических систем с флуктуирую щими параметрами. М., 1975.
- З. Голынский С. М., Гусев В. Д. «Геомагнетизм и аэрономия», 1976, 16, № 6, 1026.
- 4. Chandra H., Rastogi R. G. «Апп. Geophys.», 1972, 28, N 3, 581. 5. Зеленков В. Е., Новоселова Т. А. «Ионосферные исследования», 1972, **№** 21, 18.
- 6. Голынский С. М. Автореф. канд. дис. МГУ, 1976.

Кафедра волновых процессов Поступила в редакцию 21.08.78

УДК (535.241.13:537.228):621.373.826

А. В. ПРИЕЗЖЕВ, А. Г. ТИХОМИРОВ, В. А. ЯКОВЛЕВ

ЛАЗЕРНЫЙ ДОППЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ С ЭЛЕКТРООПТИЧЕСКИМ МОДУЛЯТОРОМ ДЛЯ ИССЛЕДОВАНИЯ МЕДЛЕННЫХ ЗНАКОПЕРЕМЕННЫХ ТЕЧЕНИЙ С НЕПРЕРЫВНЫМ СПЕКТРОМ СКОРОСТЕЙ

Область применения лазерных допплеровских измерителей скорости (ЛДИС) постоянно расширяется [1]. В последнее время они использоваться в биофизических исследованиях, в частности стали для измерения параметров движения цитоплазмы в живых микроорганизмах [2, 3]. Эти движения в ряде случаев носят сложный характер, что накладывает определенные ограничения на оптическую схему ЛДИС и на систему обработки допплеровского сигнала. В частности, необходимо устранить низкочастотную составляющую допплеровского сигнала, препятствующую точной регистрации спектра скоростей исследуемого объекта, сдвинуть сигнальную составляющую в подходящий частотный диапазон (например, для записи на магнитную ленту и последующей цифровой обработки), обеспечить возможность измерения знака скорости, а также уменьшить объем извлечения информации.