Site of the

А. И. ПИЛЬЩИКОВ, Г. Ф. ЗАХАРОВ

ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ СПИНОВЫХ ВОЛН В МОНОКРИСТАЛЛАХ ФЕРРИТОВ С БОЛЬШОЙ АНИЗОТРОПИЕЙ

Энергия кристаллографической анизотропии оказывает значительное влияние на условия параметрического возбуждения спиновых волн первого порядка ($\omega_k = \omega/2$, где ω_k — частота спиновой процессии, ω — частота поля накачки) [1—6].

В работах [4—8] показано, что для материалов с малой анизотронией $\left(\frac{|K_1|}{M} < M\right)$, здесь K_1 — первая константа анизотропии, M — магнитный момент) пороговое поле и спектр параметрических спиновых воли становятся анизотропными как по направлению намагничивания, так и по поляризации и ориентации СВЧ-поля накачки h.

Так, в отличие от оси <001> для оси <111> имеется анизотропия пороговых полей и спектра при перпендикулярной накачке по направлению поля h относительно плоскости (110).

При определенных условиях возбуждения (направление намагничивания, величина постоянного поля H_0 , ориентация h относительно H_0 , близость ω к частоте ферромагнитного резонанса) лишь параллельная составляющая СВЧ-поля при произвольной накачке определяет пороговое поле и спектр параметрических спиновых волн.

При значительном увеличении кристаллографической анизотропии $\left(\frac{|K_1|}{M} > M\right)$ появляются новые особенности спектра и пороговых полей параметрических волн, которые рассматриваются в данной работе.

§ 1. Спектр спиновых волн. Для насыщенных монокристаллов ферритов кубической симметрии с малой кристаллотрафической анизотропией влияние энергии анизотропии на спектр термических спиновых волн проявляется в снятии вырождения по углу ф.:

$$\omega_{k} = (A_{k}^{2} - |B_{k}|^{2})^{1/2} = [(\gamma H_{1} + \omega_{M} \sin^{2} \theta_{k}) \gamma H_{1} - N_{1*} (N_{1*} + \omega_{M} \sin^{2} \theta_{k} \cos 2\varphi_{k})]^{1/2}, \qquad (1)$$

11.71

thuấc sự tranh

$$\begin{split} \mathbf{\gamma}H_{1} &= \mathbf{\omega}_{H} - \widehat{\mathbf{\omega}}_{M}N_{z} + \mathbf{\omega}_{\mathrm{o6}}k^{2} + N_{1}; \ A_{k} &= \mathbf{\gamma}H_{1} + \frac{\mathbf{\omega}_{M}}{2}\sin^{2}\theta_{k}; \\ B_{k} &= \frac{\mathbf{\omega}_{M}}{2}\sin^{2}\theta_{k}e^{2i\varphi_{k}} + N_{1}*; \ N_{1} &= -\mathbf{\omega}_{a}\left(2 - 10\sin^{2}\theta + \frac{15}{2}\sin^{4}\theta\right); \end{split}$$

$$\sum_{i=1}^{N_{a}} N_{i*} = \frac{3}{2} \omega_{a} \sin^{2} \theta \left(2 - 3 \sin^{2} \theta\right); \ \omega_{M} = 4\pi M \gamma;$$

$$\widehat{\omega}_{M} = \gamma M; \ \omega_{H} = \gamma H_{0z}; \ \omega_{o5} = \gamma DM; \ \omega_{a} = \gamma \frac{|K_{1}|}{M};$$
$$H_{0z} = H_{0} - \frac{1}{2} \left(\frac{K_{1}}{2M}\right)^{2} \frac{1}{H_{0}} \sin^{2} \theta (3 \sin^{2} \theta - 2);$$

36

 γ — гиромагнитное отношение, k, θ_k , φ_k — волновое число, полярный и азимутальный углы вектора распространения k, H_0 расположено в плоскости (110), θ — угол между H_0 и M, D — константа обменного взаимодействия.

Из (1) следует, что происходит размытие линий спектра $\omega_k(\mathbf{k})$ с $\theta_k \neq 0^\circ$, т. е. вместо линии $\omega_k(\mathbf{k})$, соответствующей некоторому значению θ_k в изотропном случае, появляется полоса значений $\omega_k(k, \varphi_k)$ для данного θ_k в анизотропном образце (рис. 1).

Рис. 1. Спектры спиновых волн для сфер: a - ИФГ (4 $\pi M = 1750$ Fc, $\frac{1 N_{11}}{M} =$ =43 Э, $H_0 = 1000$ Э, $D = 5 \cdot 10^{-5}$ Э· см², <110>); δ — Ni-феррита (4 $\pi M =$ =3270 Гс, $\frac{1 K_{11}}{M} = 260$ Э, $H_0 = 1500$ Э, <110>). Сплошные линии — $\varphi_{R} = 0^{\circ}$. 180°; пунктир — $\varphi_{R} = \pm 90^{\circ}$

В этом случае, как показывает численная минимизация порогового поля, при продольной ($h \parallel H_0$) и поперечной ($h \perp H_0$) накачках (h лежит в плоскости ($1\overline{10}$), $H_0 \parallel < 110 >$) возбуждаются спиновые волны с волновыми числами соответственно $k \parallel$ и $k \perp$, причем (см. рис. 1)

$$k_{\parallel} < k_{\perp}. \tag{2}$$

При поле накачки, ориентированном под произвольным углом ψ (ψ — угол между h и H₀, h по-прежнему лежит в плоскости (110)), будут возбуждаться спиновые волны с волновыми числами k_{ψ} :

$$k_{\parallel} \ll k_{\psi} \ll k_{\perp}.$$

Переход к монокристаллам ферритов с большой анизотропией $(K_1/M \ge M)$ приводит к тому, что отмеченное размытие линий спектра $\theta_k = \text{const}$ спиновых волн по углу φ_k становится достаточным для перекрытия областей спектра с $\theta_k = 90^\circ$ и $\theta_k \le 45^\circ$, которые характерны для спиновых волн, возбуждаемых соответственно продольной и поперечной накачками (рис. 1).

При этом численная минимизация порогового поля показывает, что возбуждаются спиновые волны с

$$k_{\parallel} > k_{\perp}$$
, (3)
что противоположно выражению (2).

37

Поэтому можно ожидать, что при переходе от продольной к поперечной накачке могут появиться особенности изменения спектра и пороговых полей параметрических спиновых волн.

§ 2. Эллиптичность спиновых волн. При исследовании механизмов нараметрического возбуждения важной характеристикой является эллиптичность спиновых волн ε_{h} (отношение полуосей эллипса црецессии намагниченности термической спиновой волны) [7]:

$$\varepsilon_k = \left(\frac{A_k - |B_k|}{A_k + |B_k|}\right)^{1/2} = f(k, \theta_k, \varphi_k).$$
(4)

Так как нами рассматриваются процессы параметрического возбуждения спиновых волн первого порядка, то параметр k можно исключить из (4), учитывая условие $\omega_k(k, \theta_k, \varphi_k) = \omega/2$. Полученная зависимость $e_k(\theta_k, \varphi_k)$ может быть представлена в виде графика (рис. 2). При этом величина H_0 определяет значение волнового числа k, когда k > 0, или границы значений θ_k , φ_k , когда k = 0.

На рис. 2 приведена зависимость $\varepsilon_k(\theta_k)$ при $K_1=0$ (изотропный случай). Видно, что ε_k при $K_1=0$ определяется только действием динольного поля, причем при $\theta_k=0^\circ$ $\varepsilon_k=1$ (круговая прецессия).

В анизотропном случае появляется зависимость ε_k от азимутального угла φ_k , причем для $\varphi_k = 0^\circ$, 180° при значении угла $\theta_k = \theta_k^*$ (для рассматриваемой оси <110>), где $\sin^2 \theta_k^* = 3 \frac{|K_1|}{M} / 4\pi M$, эллиптичность $(\varepsilon_k)_{\varphi_k = 0^\circ, 180^\circ} = 1$.

Такая особенность функцин $\varepsilon_h(\theta_h, \varphi_h)$ при значениях $\varphi_h = 0^\circ$, 180° и $\theta_h = \theta_h^\circ$ (для оси <110>) связана с компенсацией действий поля

диполь-дипольного взаимодействия и поля кристаллографической анизотропии на спиновую прецессию, которая становится круговой.

Следует подчеркнуть, что здесь круговая прецессия ($\varepsilon_k = 1$) соответствует некоторому углу $\theta_k \neq 0^\circ$, что существенно отличается от случая изотропного образца, когда условию $\varepsilon_k = 1$ соответствуют спиновые волны с $\theta_k = 0^\circ$.

С другой стороны, как в изотропном, так и в анизотропном образце условие $\varepsilon_h = 1$ означает отсутствие поперечной составляющей собственного магнитного поля, связанного с данной спиновой волной. Это означает невозможность параметрического возбуждения таких спиновых волн исходя из механизма двукратного преобразования частоты, предложенного в [9].

Поэтому области постоянных полей *H*₀ и условия возбуждения (направление и поляризация СВЧ-поля накач-

ки), которые обеспечивают параметрическое возбуждение спиновых волн с эллиптичностью, близкой к $\varepsilon_k = 1$, представляют особый инте-

рес, поскольку здесь можно ожидать появления особенностей спектра и пороговых полей параметрических спиновых волн.

§ 3. Расчет порогового поля для сферы Ni-феррита. Рассмотрим условия параметрического возбуждения спиновых волн. первого порядка в сферическом монокристалле Ni-феррита $\left(\frac{|K_1|}{M} = 260 \Im, 4\pi M = \right)$

 $= 3270 \ \Gamma c^{\prime}$

والمتعاقف والمتحجا المتحجا والمراجع والمراجع والمتعادية С помощью ЭВМ была проведена численная минимизация выражений для пороговых полей (в случае H₀||<110>, при этом линейнополяризованное поле h ориентировано в плоскости (110) под произвольным углом $\psi \in \mathbf{H}_0$ [7]:

$$\begin{split} h_{\text{nop}} &= \frac{\Delta H_k}{2} \frac{\omega}{|W|}, \text{ rge } W = \frac{T_1 \omega + T_2 Y}{XY - \omega^2} \sin \psi + B_k \cos \psi; \\ T_1 &= \frac{\omega_M}{2} \sin \theta_k \cos \theta_k \left[\left(A_k + \frac{\omega}{2} \right) e^{i\phi_k} - \frac{B_k^2}{|B_k|^2} \left(A_k - \frac{\omega}{2} \right) e^{-i\phi_k} + 2iB_k \sin \phi_k \right]; \\ T_2 &= \frac{\omega_M}{2} \sin \theta_k \cos \theta_k \left[\left(A_k + \frac{\omega}{2} \right) e^{i\phi_k} + \frac{B_k^2}{|B_k|^2} \left(A_k - \frac{\omega_k}{2} \right) e^{-i\phi_k} - 2B_k \cos \phi_k \right]; \\ X &= \omega_H - \omega_a; \quad Y = \omega_H + 2\omega_a. \end{split}$$

Результаты расчета для сферы Ni-феррита, когда частота поля накачки f_н=9,4 ГГц, приведены на рис. 3-5 (предполагалось, что ΔH_k = const, где ΔH_k — параметр затухания спиновых волн); цифры при линиях указывают значения ф в градусах.

Спектр параметрических спиновых волн имеет следующие характерные особенности.

Зависимость Dk²(H₀) (рис. 3) при различных значениях ψ показывает, что для Ni-феррита действительно справедливо неравенство (3). Помимо этого, при переходе от угла $\psi = 90^\circ$ к $\psi = 0^\circ$ значения $(Dk^2)_{\Phi}$ уменьшаются (при $H_0 = \text{const})$ до нуля, а затем скачком возрастают до значения $(Dk^2)_{\psi=0^\circ}$ (при той же величине H_0).

Такое изменение параметра (Dk²)_Ф опиновых воля полностью объясняется обсуждавшимся выше перекрытием областей анизотропного спектра спиновых волн для образцов с большой анизотропией.

Резкое изменение всех параметров θ_k , φ_k , D_k^2 волнового вектора k (k, θ_k, φ_k) параметрических спиновых волн и относительного порогового поля $h_{\text{пор}}/\Delta H_h$ для угла накачки $\psi = 40^\circ$ при поле $H_0 \approx 1600$ Э (рис. 3-5) связано с переходом от условий параметрического возбуждения спиновых воли при преимущественном действии продольной составляющей СВЧ-поля (при $H_0 < 1600 \ \Im$) к условиям совместного действия продольной и поперечной накачек (при $H_0 > 1600 \ \Im$). Это явление проявляется и в образцах ферритов с малой анизотропией [7].

Из рассмотрения рис. 3-5 видно, что в области поля Н₀=2100 Э также имеются резкие изменения параметров θ_k , φ_k (рис. 3, 4) и менее резко выраженные изменения относительных пороговых полей $h_{nop}/\Delta H_k$ (рис. 5) для углов $\psi = 20^\circ$, 30° , 40° и 60° . Физическая природа этого явления связана с невозможностью параметрического возбуждения спиновых волн с круговой поляризацией ($\varepsilon_k = 1$), которая обсуждалась выше.

Рнс. 3. Зависимость θ_k (сплошные линии) и D_k^2 (пунктир) от H_0 для различных ψ (сфера Ni-феррита, ось <110>, f_{π} =9,4 ГГц)

Расчет показывает, что для Ni-феррита именно при поле $H_0 = 2100 \ \Im$ (при рассматриваемых условиях намагничивания) $\varepsilon_k = 1$ при $\theta_k^* \approx 30^\circ$, $\varphi_k = 0^\circ$, 180°. Результаты минимизации показывают, что вблизи поля $H_0 = 2100 \ \Im$ возбуждаются спиновые волны, эллиптич-

Рис. 4. Зависимость φ_{κ} от H_0 для различных ψ (сфера Ni-феррита, ось <110>, fn=9,4 ГГц)

Рис. 5. Зависимость $h_{\pi \circ D} / \Delta H_{\kappa}$ от H_{π} лля различных ψ (сфера Ni- H_0 для различных ψ (сфера Ni-феррита, ось <110>, $f_{\rm H}$ =9,4 ГГц)

ность которых близка к единице. А при подходе к полю H₀=2100 Э значения θ_k и φ_k резко изменяются ($\varphi_k \rightarrow 90^\circ, \theta_k \rightarrow 45^\circ$), так как параметрическое возбуждение спиновых волн с $\varphi_{h} = 0^{\circ}$, 180° и $\theta_{h} =$ $= \theta_{k} = 30^{\circ}$, как показано выше, невозможно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Китаев Л. В., Гончарова А. А., Катамаран Г. И. Физ. тв. тела, 1976. **9**, № 1.
- 2. Яковлев Ю. М., Бурдин Ю. Н., Шильников Ю. Р., Бушуева T. H. 2. Яковлев Ю. М., Бурдин Ю. П., Шильников Ю. Г., Бушусь Физ. тв. тела, 1970, 12, № 10, 3059. 3. Ратtоп С. Е. Ј. Арш. Рhys., 1969, 40, 2837; 1970, 41, 431. 4. Яковлев Ю. М., Бурдин Ю. Н. Физ. тв. тела, 1974, 16, № 2, 466. 5. Петраковский Г. А. Изв. вузов. Физика, 1962, № 6, 29. 6. Пильщиков А. И., Захаров Г. Ф. Деп. ВИНИТИ № 615-74, 1974.

- 7. Захаров Г. Ф. Канд. дис. М., 1975. 8. Пильщиков А. И., Захаров Г. Ф. Вестн. Моск. ун-та. Физ., астрон., 1977. 18, № 5, 131.
- 9. Гуревич А. Г. Ферриты на СВЧ. М., 1960.

Поступила в редакцию 19.04.78