ческого расхождения внеосевых волн, в центре должен наблюдаться отчетливо выраженный минимум. Помимо СИ, в осевом направлении имеет место также и сверхизлучение возбуждаемых волн в боковых направлениях. В случае F << 1 это излучение значительно менее интенсивно вследствие малости проекции плоской волны возбуждения на плоские внеосевые волны излучения. Однако в силу большого числа этих возбуждений ~1/F их вклад в динамику населенностей является преобладающим, т. е. существенная часть энергии излучается вбок, несмотря на малую интенсивность такого излучения.

СПИСОК ЛИТЕРАТУРЫ

1. Давыдов А.С. Теория твердого тела. М., 1976, 639 с.

- 2. Гришанин Б. А. Квантовые электромагнитные процессы в конденсированных средах и естественное затухание в ванд-дер-ваальсовых христаллах.- ЖЭТФ,
- средах и естественное затухание в ванд-дер-вальсовых кристаллах. ЖЭГФ, 1977, 72, 783—792. 3. Андреев А. В. О суперфлуоресцентной кинетике у-лазера. ЖЭГФ, 1977, 72, 1397—1403; Picard R. H., Willis C. R. Coupled Superradiance Matter Equa-tions. Phys. Rev., 1973, A8, 1536—1540. 4. Mac Gillivray J. C., Feld M. S. Theory of superradiance in an Extended Op-tically Thick Medium. Phys. Rev., 1976, A14, 1169—1174. 5. Vrehen Q. H. F., Hikspoors H. M. J., Gibbs H. M. Quantum Beats in Su-periluorescense in Atomic Cesium. Phys. Rev. Lett., 1977, 38, p. 764—767.

Поступила в редакцию 16.05.78

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1980. Т. 21. № 2

УДК 551.593.5

А. Х. ХРГИАН, Н. А. ПЕТРЕНКО

О НЕКОТОРЫХ ОПТИЧЕСКИХ ЯВЛЕНИЯХ СУМЕРЕЧНОЙ АТМОСФЕРЫ

Наблюдения вида сумерек и явлений зари, зависящих от оптических свойств верхней атмосферы, являются доступным и чувствительным методом «зондирования» последней. Наблюдения различных участков спектра при этом расширяют информативность такого зондирования, поскольку заря имеет разнообразную и меняющуюся в зависимости от атмосферных условий окраску.

После захода Солнца на западной стороне горизонта бывает видна цветная полоса, красновато-коричневая снизу и переходящая в желтоватую вверху, а над ней, когда Солнце опустится под горизонт на угол δ₀≈3° (так называемая депрессия Солнца), появляется иногда пурпуровое пятно. Оно более ярко в его нижней части, имеет четкую нижнюю границу и сходит на нет вверху. При депрессии $\delta_0 > 5^\circ$ оно гаснет. Пурпуровое пятно освещает пейзаж, в особенности снег и снежные горы, розовым светом. Так возникает явление, называемое «горением Альп» или «горением Анд» [1-3].

Ранее была высказана гипотеза, что пурпуровое пятно создается рассеянием света в слое аэрозольных частиц. Такой слой часто удается непосредственно наблюдать в стратосфере на высоте около 20 км

(между 16 и 22 км) с самолета. Химический анализ проб частиц из слоя обнаружил в них значительную примесь сульфатных солей [4]. Ниже мы делаем попытку расчета явлений рассеяния света в аэро-

Рис. І. Аэрозольный слой стратосферы н его эффекты в сумерки. Плоскость вертикала Солнца

зольном слое в зависимости от его свойств. Предположим, что частица А в тонком слое аэрозоля (рис. 1), имеющем толщину Δh и расположенном на высоте h над поверхностью Земли (центр ее находится в точке С) освещена из-под гори-ОО' лучом зонта наблюдателя Солнца SPA. Луч составляет с горизонтом угол депрессии δ₀ и со слоем аэрозоля угол $\zeta = 90 + \delta$. Из точки О можно видеть на общем фоне сумеречного неба свет, рассеянный частицами слоя в плоскости РАО под углом β₀ к направлению падающего луча SPA. При этом $\beta_0 =$ $=\beta+\delta$. Луч света каќ на пути SPA, так и на пути АО испытывает ослабление. При расчете дошедшего до О света следует учесть как наклонную толщину слоя, наблюдаемого под углом у (см. рис. 1), так и индикатрису рассеяния, зависящую от свойств частиц. Угол у вычисляется из соотношения

$$\sin \gamma / \cos \beta = R / (R + h).$$

где где

Энергетическая освещенность I, создаваемая в точке O светом, рассеянным участком слоя в A, выраженная в Bt/M^2 запишется так:

$$I = I_{\bullet \bullet} T_1 \varkappa \sigma N T_2 \sec \gamma, \tag{1}$$

где I_{∞} — освещенность, создаваемая лучом Солнца за пределами атмосферы, T_1 и T_2 — множители, выражающие ослабление луча на пути SPA и AO соответственно, \varkappa — доля рассеянного под углом β_0 света на стерадиан, $N\sigma$ — общее сечение рассеяния N частицами, имеющимися в столбе воздуха сечением в 1 м². Мы положили $N\sigma$ = 1,059 · 10⁻³ м².

При этом

$$T_{1} = 10^{-\alpha \mu X - m_{1}(\tau + \chi)},$$

$$T_{2} = 10^{-m_{2}(\tau + \chi)},$$
 (2)

где а — коэффициент (десятичный) поглощения озона, X — его общее количество в атмосфере над уровнем перигея луча SP, τ — коэффициент молекулярного рассеяния воздуха, χ — коэффициент рассеяния общего «фонового» аэрозоля атмосферы (который мы предполагаем распределенным в атмосфере равномерно), μ — масса озона,

$$m_{1} = 2m (90^{\circ}) \frac{p(y)}{p_{0}} - m (90^{\circ} - \delta) \frac{p(h)}{p_{0}},$$
$$m_{2} = m (90^{\circ} - \beta) \frac{p_{0} - p(h)}{p_{0}},$$

p(h), p(y), p_0 — давление воздуха на уровнях точки A, перигея P и на уровне моря, и где под «массами» m_1 , m_2 мы подразумеваем, как это принято в актинометрии, средний секанс угла падения на путях SPA и AO. Значения m для различных β и δ и величины a, b и χ , взятые для длин волн 400, 450, ..., 650 нм, которые мы обозначим как участки спектра I, II, ..., VI соответственно, заимствованы из таблиц, приведенных в [5], полагая также $m(90^\circ) = 38,15$ (см. табл. 1). Поскольку участок спектра с $\lambda \simeq 600$ нм значительно поглощается озоном атмосферы, мы включили эффект последнего в расчет T_1 . Вычисления I были сделаны параллельно и для совершенно чистой атмосферы (без фонового аэрозоля), и для случая наблюдений в обычной атмосфере, но с высоты уровня 700 мб (около 3 км), чтобы моделировать явление зари в высоких горах.

Таблица 1

	Длина волны λ (нм)						
Оптические характеристики атмосферы		450	500	550	600	650	
I _∞ — освещенность, создаваемая внеатмосферной радиацией Солнца (Вт/м ² ·50 нм)	77,5	102,1	100,3	97,1	91,8	82,7	
b — десятичный коэффициент молекулярного рассеяния (10 ⁻⁶ м ⁻¹)	19,8	12,1	7,9	5,3	3,8	2,7	
a — коэффициент поглощения озона (10 ⁻³ см ⁻¹)	1,7	1,5	14,5	37,3	58,7	28,6	
τ оптическая толщина чистой атмосферы	0,158	0,097	0,063	0,043	0,030	0,022	
χ — оптическая толщина фонового аэрозоля	0,137	0,124	0,115	0,109	0,103	0,097	

Спектральные свойства атмосферы

Мы использовали индикатрису рассеяния типа V по данным О. Д. Бартеневой (см. также [5]) с нормированной величиной рассеяния «вперед» равной 0,681 на стерадиан. Однако переход к другим, например, более острым, индикатрисам рассеяния в (1) не вызовет затруднения.

На рис. 2 приведены рассчитанные так по (1) графики распределения энергетической освещенности светом неба на различных угловых высотах над горизонтом β для участков спектра II—VI (фиолетовые лучи практически отсутствуют в цветах зари), для указанных выше вариантов наблюдений. Из графиков видно, что моделируемый нами аэрозольный слой при δ_0 =3° должен создавать на небесном своде светлое пятно, наиболее яркое на высоте 6° над горизонтом, с четкой нижней границей и с расплывчатой—верхней (ср. с [2]). В пятне как красные лучи (VI, λ =625—675 нм), так и желтые (IV, λ =525—575 нм) на два порядка ярче голубых, хотя в этой части спектра Солнца энергетическая освещенность I_{∞} распределена сравнительно равномерно. Зато в пятне должны быть ослаблены озоном оранжевые лучи (V, λ =575—625 нм). Вероятно, недостаток оранжевых лучей и создает в глазу впечатление синего цвета—дополнительного к оранжевому.

Так как (см. табл. 1) в красном участке спектра общее ослабление как прямого (на пути SPA), так и рассеянного света (на пути AO)

÷.

определяется главным образом аэрозольным фоном атмосферы, а в фиолетовом последний создает лишь пятую ослабления, в более чистой горной атмосфере зимой преобладание красного цвета должно быть

Рис. 2. Рассчитанная величина энергетической освещенности I в сумерки при депрессин Солнца $\delta_0=3^\circ$ в вертикале Солнца и в функции угловой высоты над горизонтом. Величина I вычислена: a — по основной модели расчета (кривые II—VI для соответствующих участков спектра), δ по модели совершенно чистой атмосферы без фонового аэрозоля (кривые III' и IV'), a при наблюдении с гор, с высоты ~3 км (кривая IV₂ и кривая III₂ на рис. a)

особенно заметно (см. кривые III и IV' рис. 2). Там пурпуровый свет должен быть особенно ярок — он создает, например, упомянутое выше «горение Альп».

Поскольку I пропорциональна $N\sigma$, яркость пурпурового света возрастает с ростом N или σ , и, наблюдая его, можно оценить концентрацию аэрозоля. В частности, исчезновение пурпурового пятна в отдельные вечера, вероятно, зависит от исчезновения аэрозольного слоя,

описанного, например, в 1977 г. Кезелау и Фабианом [6]. Наоборот, сильное запыление атмосферы после извержения вулкана Фуэго в Гватемале в октябре 1974 г. вызвало яркие цвета пурпурового пятна вечерней зари через 40—60 мин после захода Солица, которые наблюдал и описал Х. Х. Лэм в Англии в декабре 1974 г. [7].

Таблица 2

Освещенность,	создаваемая светлым	і пятном (/) И	і молекулярным рассеяни	ем света
В	толще атмосферы (I') на высоте в	= 6° над горизонтом	

	Длина волны λ (нм)						
Энергетическая освещенность	400	450	500	550	600	650	
/ (мВт/ м ² ·ср) / в отсутствие запыленности /' молекулярная	0,06 2,6 34,2	0,7 24 143	2,0 59 212	12,4 316 222	3,7 83 243	7,8 149 315	

В таблице 2 приведены результаты вычислений I' — освещенности, создаваемой молекулярным рассеянием света в толще атмосферы, т. е. сумеречным небом, на той высоте 6° над горизонтом, где пурпуровый свет ярче всего. В чистой атмосфере контраст пятна и неба должен быть значительным: в IV области спектра пятно в 2,5 раза ярче неба, а в VI области — в 1,5 раза ярче. В обычной атмосфере этот контраст должен быть существенно слабее (1,04—1,05). Несомненно, из-за этого пурпуровый свет наблюдается не часто.

Интерес представляет наблюдение также и «ширины» светлого пятна — спадания его яркости с удалением от вертикала Солнца. Для точки A' небосвода — на той же угловой высоте β , что и точка A, но под азимутом ψ к вертикалу Солнца, — очевидно, в (1)—(2) сохраняются те же, что и для A значения I_{∞} , T_2 , m_2 и sec γ . Расчет показывает, что и высота перигея луча P', освещающего A' (и следовательно, m_1) и зенитное расстояние Солнца ζ' для точки A' изменяются весьма незначительно по сравнению с A при азимутах $\psi = 10-20^\circ$, соответствующих максимальной наблюдаемой ширине пятна. Зато угол рассеяния β_0 существенно увеличивается с ростом ψ . В частности, для $\delta_0 = 3^\circ$, $\beta = 6^\circ$, β_0 меняется от 9° в вертикале Солнца при $\psi = 0$ до 22° при $\psi = 20^\circ$. Поэтому горизонтальные размеры светлого пятна определяются почти исключительно той или иной остротой индикатрисы рассеяния частиц аэрозольного слоя.

Индикатрисы, рассчитанные К. С. Шифриным для диэлектрических частиц (например, водяных капель) в функции параметра $\rho = 2\pi r/\lambda$, показывают, что увеличение β_0 от 9° до 22° дает уменьшение *I* на 24% при каплях радиуса r = 0.29 мкм и на 81% (что примерно соответствует наблюдаемому спаду яркости светлого пятна) — при r = 0.76 мкм.

Реальный аэрозоль стратосферы, однако, состоит из гораздо более мелких частиц (r=0,1-0,2 мкм). Такие частицы могут иметь очень острую индикатрису рассеяния, в особенности в длинноволновом участ-ке спектра, только в случае если они состоят из проводящего вещества, например из солей или растворов.

Таким образом, наблюдение пурпурового света открывает новые возможности изучить более подробно состав и концентрацию стратосферного аэрозоля. Для этого наиболее благоприятны наблюдения с больших высот, в том числе с самолетов, в особенности зимой, когда тропосфера сравнительно чиста.

СПИСОК ЛИТЕРАТУРЫ

1. Броунов П. И. Атмосферная оптика. М., 1924.

2. Заморский А. Д. Оптические явления в природе. М., 1964, 64 с. 3. Розенберг Г. В. Сумерки. М., 1963, 380 с. 4. Довгалюк Ю. А., Ивлев Л. С. Физика водных и других аэрозолей атмосферы. 1977, Л., 256 с.

 Ранационные характеристики атмосферы. Под ред. Кондратьева К. Я. 1969, 564 с.
Казеlau К. Н., Fabian P., Röhrs H. Measurements of aerosol concentration up to a height of 27 km.— Pure and applied geophys. 1974, v. 112/6, p. 877—885.
Lamb H. H. In: Smithsonian Inst. Events Notifications cards. N 2034, dec. 26, 1021 (2014). 1974, 2043, jan. 10, 1975.

> Поступила в редакцию 20.12.77

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1980, Т. 21, № 2

УДК. 551.465.15

В. В. БУКЛАНОВ, А. А. ПИВОВАРОВ

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ВОЛНОВЫХ ДВИЖЕНИЙ В ПОВЕРХНОСТНОМ СЛОЕ ВОДОХРАНИЛИЩ

К настоящему времени отечественные и зарубежные исследования ветрового волнения выявили ряд особенностей его кинематической и динамической структуры. В наиболее законченной форме механизм возникновения и развития волн разработан в резонансной теории Филлипса—Майлса [1], согласно которой форма спектра Сл развитого волнения на участке частот f выше спектрального максимума может быть описана законом $C_{\eta} \sim f^{-5}$. По измерениям разных авторов, величина показателя степени меняется в пределах от 4 до 6. Что же касается внутренней структуры самой ветровой волны, то она во многих отношениях остается неясной.

При описании внутренней структуры взволнованной жидкости наибольшее развитие получили линейные и нелинейные модели, основанные на предположении несжимаемости жидкости и потенциальности движения. Однако исследования скоростного поля, проведенные в верхнем слое Шонтингом [2], Ефимовым и Христофоровым [3, 4], выявили более сложную картину, чем это следует из теорий, допускающих потенциальность движений в волне. Экспериментально обнаружено, что поток импульса вблизи поверхности имеет значительную величину, а коэффициенты корреляции между компонентами орбитальной скорости не равны нулю. Шонтинг [2] показал существование фазового сдвига φ между компонентами скорости, отличного от π/2, причем

$$\overline{w'n'} \sim \sin \varphi. \tag{1}$$

Это подтвердилось экспериментами, проведенными Ефимовым, Христофоровым в море [3] и Кононковой, Показеевым в лабораторных условиях [5].

Дальнейшие исследования выявили, что спектр поля скорости в волне содержит две области: первая соответствует основным энергонесущим частотам волнения и имеет высокую когерентность с возвышением водной поверхности, во второй - когерентность с возвышением