- Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М., 1963, 1100 с.
 Бойко В. И. Электронное уширение перекрывающихся спектральных линий. ЖЭТФ, 1975, 68, вып. 3, 855—865.
 Гинзбург В. Л., Рухадзе А. А. Волны в магнитоактивной плазме. М., 1975,
- 256 с.

Поступила в редакцию 28.06.78

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1980. Т. 21. № 3

УДК 538.22

К. П. БЕЛОВ, Л. И. КОРОЛЕВА, М. А. ШАЛИМОВА, В. Ю. ПАВЛОВ, И. В. ГОРДЕЕВ, Я. А. КЕСЛЕР

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОИСТВА ХАЛЬКОГЕНИДНОЙ ШПИНЕЛЬНОЙ СИСТЕМЫ $Cu_x Co_{1-x} Cr_2 S_4$

Существующие в настоящее время магнитные полупроводники, как на основе редкоземельных халькогенидов, так и халькогенидные шпинели, обладают низкотемпературными точками Кюри (значительно ниже комнатной температуры). Очень важным в практическом отношении является изыскание составов магнитных полупроводников с точками Кюри выше комнатной температуры. Нами изучалась система халькогенидных шпинелей Cu_xCo_{1-x}Cu₂S₄. Согласно данным [1-5] она интересна с точки зрения электрических и магнитных свойств, так как в ней наблюдается переход от ферримагнетизма и полупроводниковой проводимости (CoCr₂S₄) к ферромагнетизму с высокой точкой Кюри ~ 377 К и металлической проводимости (CuCr₂S₄).

Синтез твердых растворов системы $Cu_xCo_{i-x}Cr_2S_4$ (x=0; 0,1; 0,2; 0,3; 0,35; 0,5; 0,7; 0,8; 1,0) проводился как из индивидуальных хромитов СоСг₂S₄ и СиСг₂S₄, так и из простых веществ. Установлено, что период решетки нелинейно изменяется с составом (рис. 1), что согласуется с литературными данными Лутца [5]. Рентгенофазовый анализ показал однофазность всех перечисленных выше составов.

В широкой области температур экспериментально изучены температурные зависимости намагниченности, парамагнитной восприимчивости, электросопротивления и измерен магнитный момент на молекулу при 4,2 К у всех перечисленных выше составов.

Парамагнитная восприимчивость на моль ум измерялась с помощью горизонтальных торсионных весов с электромагнитной компенсацией. Намагниченность образцов о измерялась вибрационным магнитометром. Омические контакты для измерения удельного электросопротивления о создавались втиранием индий-галлиевой пасты. Сопротивление контактов было менее 10% сопротивления образцов. Измерение сопротивления производилось мостовым методом на постоянном токе. В качестве «нуль-прибора» использовался самописец ПДС-021. Изменение сопротивления образца с температурой измерялось по раскомпенсации моста, предварительно проградуированной по эталонному сопротивлению. На вход У самописца подавалась ЭДС от трех термопар, соединенных последовательно и расположенных в непосредственной близости от образца. В сверхпроводящем соленоиде в полях до 55 кЭ баллистическим методом были сняты зависимости намагниченности образцов от поля при 4,2 К. Градуировка баллистической установки производилась по образцу из никеля (очищенного электролитическим методом), имеющему форму, идентичную с формой исследуемого образца.

Из кривых $\sigma(H)$ при разных температурах (начиная с 77 K) методом термодинамических коэффициентов [6] были рассчитаны ферро-

Рис. 1. Зависимость параметра решетки a, ферро- (T_c) и парамагнитной (θ) точек Кюри (Нееля) от содержания меди в системе $Cu_x Co_{1-x} Cr_2 S_4$. Пунктиром показана зависимость a(x), если бы она подчинялась закону Вегарда магнитные точки Кюри (Нееля) T_c всех исследованных составов. Парамагнитные температуры Кюри θ были получены из кривых $1/\chi_M(T)$ путем продолжения их до пересечения с осью температур.

Рис. 2. Зависимость обратной молярной парамагнитной восприимчивости 1/хм от темпетуры для составов: Си_{0,3}Со_{0,7}Сг₂S₄ (1) и Си_{0,8}Со_{0,2}Сг₂S₄ (2)

Физические свойства системы $Cu_xCo_{1-x}Cr_2S_4$ представлены в таблице. Распределение валентности между ионами принято нами в соответствии с формулой Cu_x^{2+} Co_{1-x}^{2+} $[Cr_2^{3+}]$ S_4^{2-} . Однако, по данным других авторов, возможны разновалентные состояния меди (Cu^{1+} , Cu^{2+}) и кобальта (Co^{2+} , Co^{3+}) и другие валентные модели, например, $Cu_x^{1+}Co_x^{3+}Co_{1-2x}^{2+}$ $[Cr_2^{3+}]$ **5**.

Кривые зависимости намагниченности от температуры начиная с 77 К для всей системы имеют обычный вейссовский вид, характерный для ферро- и ферримагнетиков, в то же время вид кривых обратной парамагнитной восприимчивости от температуры резко меняется с изменением содержания меди. Имеется постепенный переход от закона Нееля к закону Кюри — Вейсса (см. рис. 2 и таблицу). Состав с x=0,5является переходным. Отсюда мы делаем заключение, что переход от ферримагнетизма к ферромагнетизму при увеличении содержания меди в системе Cu_xCo_{1-x}Cr₂S₄ осуществляется для x>0,5.

На рис. 1 показаны также зависимости ферро- и парамагнитных точек Кюри (Нееля) от состава. Обычно для ферро- и ферримагнетиков $\theta \ge T_{\rm C}$, что объясняется существованием ближнего порядка в расположении спинов. Однако из рисунка видно, что $\theta < T_{\rm C}$ при x > 0.5,

(°2	8.		5	5	200	[<u> </u>
E _a (T>	0	0'č	0,0	0,0	0'0	0	0	[·	0
E _a (T <t<sub>c), 3B</t<sub>	0,015	0,010	0,006	0,005	0,004	0,002	0,002		0
lg p ₃₀₀ K' Om cm	1,9	1,48	0,48	0,10	·1 , 10	-1,12	1,35		-1,5
р _{300 к} , Ом.см	80	. 08	3,0	0,80	0,08	0,075	0,045	1.	0,04
^р 100 К° Омсм.	4.102	1,2.102	5,00	1,40	0,18	0, 11	0, 10		0,02
Электриче- ские свой- ства	полупро- водник, <i>р</i> -тип	*	*	*	~	*	a	*	слабый металл, <i>р</i> -тип
X _M .10 ⁸ cm ^{8.} Mout5 ⁻¹ (400K)	8,3	6,1	8,00	11,4	9,50	7,10	16,1	23,8	28,6
См	6,30	6,00	5,40	4,50	3,40	1,40	1,33	1,54	1,80
Закон кзменения Х _М	Нееля	*	* [*]	¢	۶.	1	Кюри — Вейсса	*	*
<i>п</i> 4,2 К, µБ/молек	2,02	2,10	2,13	2,15	2,50	2,65	3,20	3,70	4,32
ө [,] К	235	250	274	286	300	304	319	335	335
T _c , K	235	245	270	282	295	298	329	355	377
o⊄ ಹ	9,923	9,920	9,915	9,900	6,890	9,850	9,816	9,813	9,813
×	0	0,1	0,2	0,3	0,35	0,5	0,7	0,8	

т. е. составы с x > 0,5 являются ферромагнетиками с аномальным расположением ферро- и парамагнитных точек Кюри. Природа этого явления пока до конца не ясна. Одной из причин может быть существование для этих составов магнитных фазовых переходов 1-го рода ферромагнетизм — парамагнетизм, рассмотренных в [7]. Подтверждением этому служит обнаруженный нами гистерезис намагниченности для составов с x=0,8 и x=1. Для практических применений важно, что точки Кюри составов с x > 0,5 лежат выше комнатной температуры.

Из зависимости намагниченности образцов от магнитного поля при 4,2 К был вычислен магнитный момент насыщения на молекулу $n_{4,2 \text{ K}}$ для всех составов (таблица и рис. 3). На рис. 3 также дано изменение с x теоретического магнитного момента насыщения на молекулу n_E^{reop} , который вычислялся исходя из валентной формулы $\operatorname{Cu}_x^{2+} \operatorname{Co}_{1-x}^{2+} [\operatorname{Cr}_2^{3+}] \operatorname{S}_4^{2-}$. Мы полагали следующие значения для магнитных моментов ионов: $n_{\mathrm{B}} (\operatorname{Cu}^{2+}) = -1 \,\mu_{\mathrm{B}}$ (для простоты расчетов в дальнейшем магнитный момент меди считается локализованным на ионе меди, хотя данные нейтронной дифракции говорят о размазанности его по решетке [8]), $n_{\mathrm{E}}(\operatorname{Co}^{2+}) = -3,6 \,\mu_{\mathrm{B}}$ (значение g-фактора для Co²⁺, равное 2,4, взято из работы [3]). Отсюда получается следующее значение для магнитного момента на молекулу:

$$n_{\rm B}^{\rm Teop}({\rm Cu}_x {\rm Co}_{1-x} {\rm Cr}_2 {\rm S}_4) = 2.4 + 2.6 x.$$

Из рис. З видно, что на опыте не наблюдается линейной неелевской зависимости (ср. кривые 3 и 4), а также то, что экспериментальные значения магнитного момента занижены по сравнению с теоретическими.

Для составов $0 \le x \le 0,5$ с нелинейным (неелевским) видом функции $1/\chi_{\rm M}(T)$ была вычислена константа Кюри-Вейсса $G_{\rm M}^{\rm эксп}$ исходя из уравнения асимптоты к кривой (гиперболе) $1/\chi_{\rm M} = \frac{T - \theta_a}{C_{\rm M}^{\rm эксп}}$, где θ_a — асимптотическая точка Кюри. Для составов $0,5 < x \le 1$ с линейным видом функции $1/\chi_{\rm M}(T)$ была вычислена $C_{\rm M}^{\rm эксп}$ исходя из закона Кюри-Вейсса

$$1/\chi_{\mathbf{M}} = \frac{T - \theta}{C_{\mathbf{M}}^{\mathfrak{skcn}}}.$$

Зависимость $C_{M}^{\text{эксп}}(x)$ дана в таблице и на рис. 3.

По теории Нееля для двух коллинеарных не эквивалентных подрешеток A и B была рассчитана константа Кюри — Вейсса на моль $C_{\rm M}^{\rm теор}$ как сумма констант двух подрешеток:

$$C_{\rm M}^{\rm reop}=C_A+C_B,$$

$$C_i = N_{\rm A} x_i g_i^2 S_i (S_i + 1) \mu_{\rm B}^2 / 3k_{\rm B} \ (i = A, B).$$

Здесь N_A — число Авогадро, k_B — постоянная Больцмана, g_i — фактор спектроскопического расщепления для *i*-го иона, S_i — спин *i*-го иона, x_i — количество ионов сорта *i* в одной молекуле. Тетраэдрическая подрешетка A неоднородна с точки зрения неэквивалентности узлов по сорту заполняющих их ионов, поэтому она, в свою очередь, разбивается на подрешетку меди и подрешетку кобальта. Для трех сортов ионов $C^{\text{теор}}$ в расчете на 1 ион равны:

$$C^{\text{reop}}$$
 (Cu²⁺) = 0,375; C^{reop} (Co²⁺) = 2,7

где

50

(g-фактор Co²⁺ считаем равным 2,4); С^{теор} (Cr³⁺) = 1,875. В итоге получаем

$$C_{\rm M}^{\rm reop}({\rm Cu}_x {\rm Co}_{1-x} {\rm Cr}_2 {\rm S}_4) = 6,45 - x \cdot 2,325.$$

Из рис. З видно сильное расхождение между $C_{M}^{\text{теор}}$ и $C_{M}^{\text{эксп}}$. Удовлетворительное согласие между экспериментом и теорией получается лишь для x = 0 - 0, 1. В то время как $C_{M}^{\text{теор}}$ линейно зависит от x, зависимость $C_{M}^{\text{эксп}}(x)$ нелинейна и немонотонна, причем $C_{M}^{\text{теор}} > C_{M}^{\text{эксп}}$.

Наиболее вероятными причинами таких расхождений между $C_{\rm M}^{\rm reop}$ и $C_{\rm M}^{\rm sccn}$, а также между $n_{4,2\rm K}$ и $n_{\rm B}^{\rm reop}$ кажутся следующие: 1) возможность существования другого исходного валентного распреде-

Рмс. 4. Зависимость логарифма удельного электросопротивления от обратной температуры в системе $Cu_xCo_{1-x}Cr_2S_4$: x=0 (1); 0,1 (2); 0,2 (3); 0,3 (4); 0,35 (5); 0,5 (6); 0,7 (7) и 1,0 (8)

ления или его изменения с температурой, 2) неколлинеарность магнитных моментов подрешеток, 3) неправомерность допущения однородности подрешетки A и локализации магнитного момента иона Cu^{2+} на узлах меди. Очевидно, свойства системы $Cu_xCo_{1-x}Cr_2S_4$ значительно сложнее по сравнению с неелевским ферримагнетиком с двумя коллинеарными подрешетками. Совместное рассмотрение поведения $n_{4,2,K}$ и См говорит о переходе к ферромагнитному упорядочению между A- и B-подрешетками при x > 0.5.

Электрические свойства системы также подробно исследованы (таблица и рис. 4). Данные по электросопротивлению крайних составов x=0 и x=1 согласуются с [2]. Коэффициент термоЭДС положителен для всех составов [5], что говорит о *р*-типе проводимости в системе $Cu_xCo_{1-x}Cr_2S_4$.

Из рис. 4 видно, что вплоть до x=0,7 при низких температурах (начиная с 77 К) наблюдается полупроводниковая проводимость. Для чистого CoCr₂S₄ в точке Кюри T_C=235 К имеется резкий излом кривой lg о. По мере увеличения x эта особенность сглаживается, но все же существует вплоть до x=0,7. При температурах выше $T_{\rm G}$ для малых х наблюдается резкое падение сопротивления с температурой. По мере увеличения x это падение уменьшается, но быстрее, чем при $T < T_{\rm C}$. Так, для $x \ge 0.35$ сопротивление при $T \ge 300$ К почти не зависит от температуры. При каждой фиксированной температуре сопротивление монотонно падает с увеличением x (таблица и рис. 4). Из прямолинейных участков кривых $\lg \rho$ при $T < T_{\rm C}$ и $T > T_{\rm C}$ была вычислена энергия активации проводимости Ea (см. таблицу) для всех составов, за исключением CuCr₂S₄, обладающего металлической проводимостью. Энергия активации при $T < T_{G}$ и $T > T_{G}$ монотонно падает с увеличением x, но для $T > T_{\rm C}$ это падение быстрее. Отсюда следует, что составы с $0 \leq x \leq$ ≤0,35 являются обычными полупроводниками с красным сдвигом ширины запрещенной зоны при уменьшении температуры (что можно объяснить спиновым расщеплением энергетических зон носителей при увеличении магнитного порядка), в то время как составы с 0,35 < x < 1 являются полупроводниками со слабым голубым сдвигом (см. таблицу).

Итак, в исследованной системе Cu_xCo_{1-x}Cr₂S₄ составы с 0,5 < x < 1 являются ферромагнитными полупроводниками с точками Кюри выше комнатной температуры, с аномальным расположением ферро- и парамагнитных точек Кюри и с голубым сдвигом ширины запрещенной зоны.

СПИСОК ЛИТЕРАТУРЫ

Lotgering F. K. Ferromagnetism in spinels: CuCr₂S₄ and CuCr₂Se₄ -- Solid State Commun., 1964, 2, N 2, 55-56.
 Bouchard R. J., Russo P. A., Wold A. Preparation and electrical properties

- Bouchard R. J., Russo P. A., Wold A. Preparation and electrical properties of some thiospinels.— Inorganic Chem., 1965, 4, N 5, 685—688.
 Lotgering F. K. Mixed crystals between binary sulphides or selenides with spi-nel structure.— J. Phys. Chem. Sol., 1968, 29, N 4, 699—709.
 Goodenough J. B. Descriptions of outer d-electrons in thiospinels.— J. Phys. Chem. Sol., 1969, 30, N 2, 261—280.
 Lutz H. D. von, Becker R. A., Türk W. von, Buch V. Mischkristallbildung in den Systemen Col-xNixCrsS4, Cul-xNixCrS4 und Col-xCuCrsS4.— Monatshefte für Chemie, 1973, 104, 572—578.
 Белов К. П. Упругие, тепловые и электрические явления в ферромагнитных ме-таллах. М., 1951, 256 с.
- таллах. М., 1951. 256 с.
- 7. Белов К. П., Королева Л. И., Шалимова М. А., Баторова С. Д. Фазовый переход первого рода ферромагнетизм — парамагнетизм в CuCr₂Se₄.— Физ. тв. тела, 1975, 17, № 2, 322—323. 8. Robbins M., Lehmann H. W., White J. G. Neutron diffraction and electrical transport properties of CuCr₂Se₄.— J. Phys. Chem. Sol., 1967, 28, N 6, 897—902.

Поступила в редакцию 22.02.78