УДК 535.417

Ф. А. КОРОЛЕВ, А. Ю. КЛЕМЕНТЬЕВА

ОБ УГЛОВЫХ СВОЙСТВАХ ИНТЕРФЕРЕНЦИОННЫХ МНОГОСЛОЙНЫХ ЗЕРКАЛ И ИХ ПРИМЕНЕНИИ

Современные приборы и экспериментальные установки часто содержат интерференционные зеркала различного состава, которые работают при наклонном падении светового пучка. Большинство зеркал используется при углах падения света 0—15°, 45°, угле Брюстера. Во всех этих случаях для правильного и эффективного применения зеркал необходимо знать их угловые свойства, а в ряде задач — синтезировать специальные отражающие системы, предназначенные для работы при определенных углах падения света.

В литературе рассмотрены утловые свойства некоторых отдельных типов зеркал [1, 2]. Нашей задачей является более детальное рассмотрение ряда интерференционных зеркал, которые имеют практическое применение в видимой, ультрафиолетовой и инфракрасной области спектра, включая селективные и широкополосные системы.

Наклонное падение света на многослойную систему вызывает сдвиг опектральной кривой пропускания Тл или отражения R в коротковолновую часть спектра с одновременной деформацией этой кривой. Физически это связано, во-первых, с изменением разности хода между интерферирующими лучами, отраженными от праниц каждого слоя, от которой зависит результат интерференции. Разность хода становится $2nh\cos\theta$, где θ — угол преломления светового луча в слое, n — показатель преломления слоя, h — геометрическая толщина слоя. В случае одного слоя изменение разности хода приводит к так называемому косинусному закону угловой зависимости, который дает посмещенных интерференционных экстремумов ложение слоя: $\lambda_0 = \lambda_0 \cos \theta$ или $\varkappa_0 = 1/\cos \theta$, где λ_0 — длина волны экстремума прн $\theta = 0^{\circ}$, \varkappa_{2} — относительное волновое число, равное λ_{0}/λ (безразмерная величина). Во-вторых, при наклоне изменяются френелевские амплитудные коэффициенты отражения и пропускания на границах всех слоев; они имеют существенно различные значения для s- и p-компонент поляризации светового пучка, что ведет к расщеплению интерференционной картины. Энергетический коэффициент пропускания Т определяется средним значением $(T_s + T_p)/2$ в общем случае, когда на систему слоев падает неполяризованный свет, отсюда понятна деформация спектральной характеристики, увеличивающаяся с углом наклона пучка.

Необходимо заметить, что соотношения для френелевских коэффициентов отражения и пропускания вытекают из условий непрерывности тангенциальных составляющих векторов поля $E_{s,p}$ и $H_{s,p}$ на границе двух сред, следовательно, указанное различие *s*- и *p*-компонент *T* и *R* возникает в конечном счете вследствие различного поведения составляющих векторов электромагнитного поля *E* и *H* при переходе через границы сред покрытия.

В общем виде задача о прохождении плоской волны через систему N диэлектрических слоев точно решается с помощью уравнений Максвелла или их следствия — условий непрерывности векторов E и H на всех границах слоев (всего N+1 условий). Для решения задачи

42

нужно связать поле в (N+1)-й среде (откуда падает свет) с полем в О-й среде (подложка). Решение можно представить в виде двумерного вектора $\begin{pmatrix} E^+ \\ E^- \end{pmatrix}$, где E^- и E^+ — амплитуды отраженной и проходящей волн, поскольку в каждом слое системы присутствуют две волны — отраженная и проходящая; в О-й среде будет одна проходящая волна E_0^+ .

При прохождении света через систему N слоев *s*- и *p*-компоненты волны не интерферируют и преобразуются независимо, поэтому коэффициенты пропускания для *s*-компоненты волны T_s и *p*-поляризованной — T_p могут быть вычислены независимо.

Углы преломления света в соседних средах связаны обычной формулой синусов: $n_i \sin \theta_i = n_{i+1} \sin \theta_{i+1} = n_{N+1} \sin \theta_{N+1}$, это выражение является константой для данного угла падения света на систему. Учет набега фазы волны в каждом слое. и условий непрерывности тангенциальных составляющих E и H на границах приводит к матричному уравнению системы непоглощающих слоев при наклонном падении света, связывающему составляющие

$$E_{N+1}^{+}, E_{N+1}^{-} \times E_{0}^{+}:$$

$$\begin{pmatrix} E_{N+1}^{+} \\ E_{N+1}^{-} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \frac{1}{u_{N+1}} \\ 1 \frac{1}{u_{N+1}} \end{pmatrix} \times$$

$$\times \prod_{N \dots 1} \begin{pmatrix} \cos 2\pi \varkappa g_{j} & \frac{i}{u_{j}} \sin 2\pi \varkappa g_{j} \\ iu_{j} \sin 2\varkappa \varkappa g_{j} & \cos 2\pi \varkappa g_{j} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ u_{0} - u_{0} \end{pmatrix} \begin{pmatrix} E_{0}^{+} \\ 0 \end{pmatrix}$$
(1)

где g_j — относительная оптическая толщина *j*-го слоя; $\varkappa = \lambda_0/\lambda; \lambda_0$ — фиксированная длина волны, относительно которой измеряются толщины всех слоев; $u_j = n_j/\cos \theta_j$ для p-компоненты и $u = n_j \cos \theta_j$ для *s*-компоненты поляризации волны.

Матричное соотношение (1) для наклонного падения света отличается от вида для прямого падения света [3] измененными значения ми оптических толщин $2nh/\lambda$ и появлением величины u_j вместо n_j , которые имеют разные значения для *s*- и *p*-компонент. Таким образом, интерференционная картина расщепляется на две, хотя обе компоненты распространяются в одном направлении, определяемом законом синусов. Введем следующее обозначение для матрицы:

$$\prod_{N\dots 1} \begin{pmatrix} \cos 2\pi\varkappa g_j & \frac{i}{u_j} \sin 2\pi\varkappa g_j \\ iu_j \sin 2\pi\varkappa g_j & \cos 2\pi\varkappa g_j \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}, \quad (2)$$

а результат произведения матриц обозначим матрицей с элементами ω_{jk} . Соотношение (1) можно представить теперь в более компактной форме:

$$\begin{pmatrix} E_{NH}^+\\ E_{N+1}^- \end{pmatrix} = \begin{pmatrix} \omega_{11} & \omega_{12}\\ \omega_{21} & \omega_{22} \end{pmatrix} \begin{pmatrix} E_0^+\\ 0 \end{pmatrix}, \text{ откуда } \left| \frac{E_0^+}{E_{N+1}^+} \right|^2 = \frac{1}{|\omega_{11}|^2}.$$
 (3)

Коэффициент пропускания системы по потоку $T_{s,p}$ определяется как отношение проекции вектора Пойнтинга на нормаль к границам раздела в 0-й и (N+1)-й средах в отличие от прозрачности по интен-

сивности, определяемой как отношение освещенностей в проходящем и падающем пучках света [3].

$$T_{s,p} = C_{N+1,0}^2 \frac{n_0 \cos \theta_0}{n_{N+1} \cos \theta_{N+1}} \left| \frac{E_0^+}{E_{N+1}^+} \right|^2 = C_{N+1}^2 \frac{n_0 \cos \theta_0}{n_{N+1} \cos \theta_{N+1}} \left| \frac{1}{\omega_{t1}} \right|^2, \quad (4)$$

где

$$C_{N+1,0} = \begin{cases} 1$$
для *s*-компоненты, $\frac{\cos \theta_{N+1}}{\cos \theta_0}$ для *p*-компоненты.

Для вычисления коэффициентов пропускания T_s и T_p из (1) с учетом обозначений (2) и (3) получаем следующие конкретные формулы:

$$T_{p} = \frac{4n_{0}n_{N+1}\cos\theta_{0}\cos\theta_{N+1}}{(\alpha_{11}^{(p)}n_{N+1}\cos\theta_{0} + \alpha_{22}^{(p)}n_{0}\cos\theta_{N+1})^{2} + (\alpha_{12}^{(p)}n_{0}n_{N+1} + \alpha_{21}^{(p)}\cos\theta_{0}\cos\theta_{N+1})^{2}},$$

$$T_{s} = \frac{4n_{0}n_{N+1}\cos\theta_{0}\cos\theta_{N+1}}{(2n_{N+1}\cos\theta_{0}\cos\theta_{N+1})^{2}},$$
(5)

$$= \frac{(\alpha_{11}^{(s)} n_{N+1} \cos \theta_{N+1} + \alpha_{22}^{(s)} n_0 \cos \theta_0)^2 + (\alpha_{12}^{(s)} n_0 n_{N+1} \cos \theta_0 \cos \theta_{N+1} + \alpha_{21}^{(s)})^2}{(\alpha_{11}^{(s)} n_{N+1} \cos \theta_{N+1} + \alpha_{21}^{(s)})^2 + (\alpha_{12}^{(s)} n_0 n_{N+1} - \alpha_{21}^{(s)})^2}$$

Скачки фазы при отражении Δ_R^{sp} представляют собой аргументы амплитудных коэффициентов отражения $(E_{N+1}^-/E_{N+1}^+)_{s,p}$. Принимая во внимание (3), находим:

$$\Delta_R = \arg\left(\frac{E_{N+1}^-}{E_{N+1}^+}\right) = \arg\frac{\omega_{21}}{\omega_{11}}.$$

Для вычисления Δ_R удобно воспользоваться представлением $\Delta_R = x - iy$, тогда $\Delta_R = \arctan (y/x)$. Как и ранее, соотношения (1), (2), (3) дают возможность выразить скачки фазы для *p*- и *s*-компонент поляризации через элементы матриц α_{ik} (т. е. параметры слоев покрытия) и параметры обрамляющих сред в следующей форме:

1 . .

▲ (p)

$$\Delta_{R}^{c} = \operatorname{arc} \operatorname{tg} \times \frac{2n_{N+1} \cos \theta_{N+1} (\cos^{2} \theta_{0} \, \alpha_{21}^{(p)} \, \alpha_{11}^{(p)} - n_{0}^{2} \, \alpha_{22}^{(p)} \, \alpha_{12}^{(p)})}{n_{N+1}^{2} \cos^{2} \theta_{0} \, (\alpha_{11}^{(p)})^{2} + n_{0}^{2} \, n_{N+1}^{2} \, (\alpha_{12}^{(p)})^{2} - n_{0}^{2} \cos \theta_{N+1}^{2} \, (\alpha_{22}^{(p)})^{2} - \cos^{2} \theta_{0} \cos^{2} \theta_{N+1} \, (\alpha_{21}^{(p)})^{2}}, \\ \Delta_{R}^{(s)} = \operatorname{arc} \operatorname{tg} \times \frac{2n_{N+1} \cos \theta_{N+1} \, (\alpha_{21}^{(s)} \, \alpha_{11}^{(s)} - n_{0}^{2} \cos^{2} \theta_{0} \, \alpha_{22}^{(s)} \, \alpha_{12}^{(s)})}{n_{N+1}^{2} \cos^{2} \theta_{N+1} \, (\alpha_{11}^{(s)})^{2} + n_{N+1}^{2} \, n_{0}^{2} \cos^{2} \theta_{0} \cos^{2} \theta_{N+1} \, (\alpha_{12}^{(s)})^{2} - n_{0}^{2} \cos^{2} \theta_{0} \, (\alpha_{22}^{(s)})^{2} - (\alpha_{21}^{(s)})^{2}}.$$

$$(6)$$

Последовательное вычисление элементов матриц a_{ik} проводится по обычному правилу перемножения двухрядных матриц.

Зная коэффициенты пропускания T_p , T_s для компонент поляризации, можно вычислить коэффициенты T и R для случая естественного неполяризованного света, т. е. для волны, в которой векторы E, Hимеют различную ориентацию:

$$T = \frac{T_p + T_s}{2}$$
или $R = \frac{R_p + R_s}{2}.$ (7).

Так как система непоглощающая, то для каждой компоненты поляризации справедлив закон сохранения энергии в виде $T_{s,p} + R_{s,p} = 1$.

Расчеты по формулам (1)—(7) с использованием ЭВМ типа БЭСМ-4 позволили изучить закономерности угловых свойств интерференционных зеркал, которые хорошо подтверждаются экспериментально. Нами рассматривались угловые значения максимальных коэффициентов отражения R_p , R_s , их полусумма, положения экстремумов отражения зеркал \varkappa_{9s} , \varkappa_{9p} , смещение границ области отражения, фазовые характеристики, а также особенности угловых свойств систем на различных подложках. Основные данные для интерференционных зеркал, построенных на основе трех сочетаний веществ: PbF₂-криолит, ZnSфторид и Ge-фторид, в интервале углов от 0° до 60° приведены в таблице.

В таблицу включены многослойные четвертьволновые системы, использующиеся в качестве отражателей с коэффициентами отражения от 50 до 100%. Для внешних слоев отражателей были выбраны вещества с высоким показателем преломления, поскольку такие системы, как было показано ранее [4], являются более эффективными при наличии слабого поглощения в слоях. Обеспечение промежуточных значений коэффициента отражения легко производится изменением оптической толщины внешнего слоя *H*.

Наклонное падение светового лучка вызывает сдвиг всей спектральной кривой отражения зеркал в коротковолновую часть спектра; смещаются кривые R_s и R_p. Положение смещенных экстремумов R (кар и каз) в общем случае различно, однако с возрастанием числа слоев N (при $R \rightarrow 100\%$) многослойных четвертьволновых зеркал на подложках со средним значением *п* экстремумы R_s и R_p сближаются и наблюдается одно предельное значение $\kappa_{2}(=\lambda_{0}/\lambda_{0})$ для каждого угла падения света. Оно приведено в таблице в верхней строке данных для каждого типа покрытий и определенного угла падения света. Исследование показывает, что сдвиги максимумов отражения зеркал жаз, жар практически одинаковы для ряда покрытий, для 15° сдвит равен 0,01, для 30° — 0,04—0,05. Лишь при больших значениях углов поворота зеркал сдвиги жа отличаются: большую величину сдвига имеют зеркала, выполненные на веществах с меньшими значениями показателей преломления. Например, $\varkappa_{2} = 1.21$ для зеркал PbF₂-криолит и $\varkappa_{2} = 1.14$ для зеркал Ge-фторид при угле падения 60°.

Таким образом, зависимость ка от показателей преломления слоев для многослойного зеркала носит более сложный характер, существенно отличный от косинусного закона для одного слоя, а наличие слоев с большим показателем преломления сказывается лишь при больших углах падения света. При повороте зеркал происходит смещение границ области отражения, пропорциональное сдвигам экстремумов отражения. Границы области отражения зеркал на уровне 0,5 R_{max}, имеющих $n_H/n_L = 1.9/1.34$ (PbF₂—Na₃AlF₆), определяется значениями ж= =0,87 и 1,13, для покрытий с n_H/n_L=2,3/1,34 (слои ZnS-Na₃AlF₆) значениями $\varkappa = 0.79$ и 1,21 и для покрытий с $n_H/n_L = 4.0/1.34$ (слои Ge — Na₃AlF₆) — значениями \varkappa = 0,60 и 1,40 при нормальном падении света. Пользуясь этими данными, легко определить новые положения границ при повороте: для этого нужно значения и при $\theta = 0^\circ$ умножить на значение жа, указанное для соответствующего угла падения в таблице. Например, зеркало для УФ-области спектра с λ₀=280 нм работает от 250 нм ($\varkappa = 1,13$) до 320 нм ($\varkappa = 0,87$). При ловороте на угол 45° его область отражения займет положение от 220 нм (\varkappa =1,27) до 288 HM ($\kappa = 0.975$).

						. <u></u>				
Состав покрытия	N	Угол падения светового пучка, θ_{N+1}^0								
		0	15		30		45		60	
		R	_R p	R _s	Rp	R _s	R_p	R _s	R _p	Rs
		$\varkappa_{g} = 1$	×3=	- 1,01	×, =	= 1,05	ж _э =	= 1,12	× ₃ =	1,21
	5	66,6	64,6	68,4	58,2	74,0	44.2	81.3	21,2	89,2
$n_{H} = 1,90$	7	81,7	80,2	83,2	75,2	87,0	61,8	91,7	35,8	95,9
$n_I = 1,34$	9	90,5	89,4	91,4	86,2	93,8	75,2	96,5 ⁻	50,2	98,5
$n_0 = 1,52$	11	95,1	94,5	95,7	91,6	97,0	84,4	98,5	62,8	99,4
U U	13	97,6	97,2	97,9	95,6	98,6	90,4	99,4	73,0	99,8
	15	98,8	98,6	99,0	97,5	99,4	94,2	99,7	80,8	99,9
	17	99,4	99,3	99,5	98,8	99,7	96,5	99,9	86,5	99,97
HL LHD		$\varkappa_9 = 1$	$\varkappa_{\mathfrak{z}} = 1,01$		$x_{9} = 1,05$		$\varkappa_{\mathfrak{s}} = 1, 11$		$\varkappa_{\mathfrak{s}}=1,18$	
	3	67.6	66,1	59,1	40,3	73,8	40.8	58,0		
$n_{H} = 2,30$	5	87,3	86,7	88,5	82,7	91,1	73,7	94,3	53,9	70,0
$n_{1} = 1,34$	7	95,7	95,2	96,0	93,1	97,7	87,8	98,4	75,4	99,3
$n_0 = 1,52$	9	98,5	98,3	99,3	97,4	99,1	94,6	99,6	85,5	99,8
Ŷ	11	.99,5	99,4	99,5	99,0	99,7	97,7	99,9	92,4	99,96
	13	99,8	99,8	99,9	99,6	99,92	99,4	99,97	96,1	99,99
HL LHD		$\varkappa_{\mathfrak{I}} = 1$	$\varkappa_{9} = 1,01$		$\varkappa_9 = 1,04$		$\varkappa_9 = 1,08$		$\varkappa_{\mathfrak{g}}=1,14$	
$n_{H} = 4,00$	1	68,5	67,5	69,8	63,5	73,2	55,6	78,5	41,1	85,2
$n_I = 1,34$	3	95,6	95,5	96,2	94,3	97,0	91,5	98,0	84,5	98,8
$n_0 = 1,52$	5	99,5	99,5	99,6	99,3	99,7	98,7	99,8	96,9	99,9
0	7	99,95	99,9	99,9	99,9	99,97	99,8	99,98	99,4	99,99
HL LHD		$\varkappa_{\mathfrak{s}} = 1$	$\varkappa_{9} = 1,01$		$\varkappa_{\mathfrak{s}}=1,04$		$\varkappa_{\mathfrak{s}} = 1,09$		$\varkappa_{9} = 1,16$	
$n_{H} = 4,00$	2	89,7	88,7	90,0	86,3	91,8	80,8	94,1	68,8	96,4
$n_{I} = 1,34$	4	98,8	98,6	98,9	98,1	99,2	96,8	99,5	93,2	99,7
$n_0 = 4,00$	6	99,99	99,8	99,99	99,7	99,99	99,5	99,99	98,7	99,98
U /	[•				

Положение экстремумов отражения \varkappa_9 и значения экстремальных коэффициентов отражения R_p и R_s многослойных четвертьволновых зеркал

С возрастанием угла падения света наблюдается рост коэффициента отражения s-компоненты (R_s) и уменьшение коэффициента отражения p-компоненты (R_p), что находится в согласии с литературными данными [1, 2]. Полусумма ($R_s + R_p$)/2, равная R для неполяризованного света, с ростом угла падения для большинства отражающих систем, в том числе для зеркал, представленных в таблице, постепенно уменьшается. Увеличение ($R_s + R_p$)/2 было отмечено для случая однослойного покрытия [1] и наблюдалось нами для систем с малым числом слоев в случае четного N, например: для двух- и четырехслойных покрытий Ge-фторид при $\theta = 60^\circ$, для зеркал PbF₂ — Na₃AlF₆ с N = 1, 4, 6при $\theta = 45^\circ$ и 60°. Пользуясь таблицей, легко оценить уменьшение R, которое составляет величину от десятых процента до нескольких процентов для $\theta = 45^{\circ}$.

Фаза волны, отраженной от многослойного зеркала Δ_R , которая, как известно [4], является линейной функцией и в области отражения зеркал и проходит через 0 или п в точке $\varkappa = 1$ при $\theta = 0^\circ$, испытывает изменения, увеличивающиеся при наклоне. Наклон Δ_R для R_p -компоненты возрастает с углом падения света, а наклон Δ_R для R_s -компоненты убывает, что ведет к расхождению фазовых скачков. Расхождению

ние Δ_R для *s*- и *p*-компонент сильнее для нечетных *N* и менее значительно для зеркал с четным *N*. Значения фазового скачка 0 и л при наклоне в ряде случаев не связаны с экстремумами R_s и R_p , однако для рассмотренных выше систем (см. таблицу) положения фазы 0, π соответствуют экстремумам коэффициентов отражения. Ширина области отражения зеркала для неполяризованного света с ростом угла наклона не

Рис. 1. Спектральные кривые отражения многослойных зеркал при угле падения света 45°: a - 13-слойное покрытие PbF₂-Na₃AlF₆ ($n_ih_i = \lambda_0/4$, $n_0 = 1,52$, $n_{N+1} = 1,0$); $\delta - 5$ -слойное покрытие Ge-Na₃AlF₆ ($n_ih_i = \lambda_0/4$, $n_0 = 1,52$, $n_{N+1} = 1,0$; R_0 соответствует нормальному падению света

меняется до значений углов порядка 50—60°, хотя составляющие *s* и *p* ведут себя различно: *p*-область отражения сужается, *s*-область расширяется.

Характерным является некоторое ухудшение контрастности границ при небольших наклонах и сильная деформация — «расплывание» спектральной кривой $(R_s+R_p)/2$ — при большом наклоне, когда $\theta \ge 60^\circ$. Рис. 1 иллюстрирует свойства многослойных четвертьволновых зеркал на примере покрытий PbF₂-криолит и Ge-фторид, применяемых в УФ- и ИК-областях спектра. Из рисунка видно, при наклоне 45° спектральная кривая $R_s+R_p/2$ зеркал хорошо сохраняет форму.

Сравнивая различные типы зеркал, можно показать, что наиболее стабильной спектральной характеристикой и лучшими угловыми свойствами отличаются зеркала, построенные с использованием веществ с высоким значением *n*, что легко достижимо в ИК-области спектра и ограничено в УФ-области, где набор подходящих веществ невелик.

Многослойные зеркала на подложках с большим n (последняя система таблицы) отличаются несколько большим разбросом значений \varkappa_9 для *s*- и *p*-компонент волны. В этом случае значения \varkappa_{9s} и \varkappa_{3p} существенно расходятся при больших углах падения, спектральные кривые отражения имеют двугорбую структуру. Для случая четного N закономерности аналогичны описанным выше (внешний слой имеет высокий показатель преломления). Таким образом, многослойные чет-

вертьволновые зеркала можно эффективно использовать вплоть до значений углов 45—50° с учетом изменения $R_{\rm max}$, которое является критерием для определения необходимого числа слоев N. При этом необходимо учесть спектральный сдвиг области отражения, достаточно просто определяемый заранее.

В настоящее время наряду с многослойными четвертьволновыми зеркалами получают все большее применение неравнотолщинные системы зеркал: селективные зеркала, состоящие из четвертьволнового

Рис. 2. Спектральные кривые отражения 9-слойного покрытия ZnS—Na₈AlF₆ с обрамляющими слоями $n_1h_1=n_9h_9=$ $=\lambda_0/8$, угол падения равен 45°, $n_0=$ =1,52, $n_{NH}=1,0$; R_0 соответствует нормальному падению света

Рис. 3. Спектральные кривые отражения широкополосного покрытия ZnS—Na₃AlF₆: DHLH 0,965*L* 0,832*H* 1,016*L* 0,908*H* 0,753*L* 0,753*H* 0,673*L* 0,673*H* 0,629*L* 0,6*H* 0,6*L* 0,6*H*. Угол падения света равен 0° (1), 45° (2). Кривая 3 соответствует системе с согласованными слоями при угле падения 45°

массива и обрамляющих слоев с толщиной, не равной λ/4, широкополосные зеркала, построенные из слоев неравной оптической толщины. В последних конструкциях в основном используются два вещества с отношениями показателей преломления, рассмотренными в таблице. Вполне понятно, что угловые свойства таких систем приближаются к свойствам описанных четвертьволновых систем, хотя и имеют более сложный характер. Так, возникающие при наклоне одвиги спектральных кривых отражения и изменения коэффициентов отражения имеют величину такого же порядка. Сдвиги фазы при отражении от неравнотолщинных двухкомпонентных зеркал носят более сложный характер, и значения 0, л уже не соответствуют экстремумам отражения, однако тип изменений при возрастании угла падения света аналогичен описанному ранее. Рассмотрим угловые свойства неравнотолщинных отражателей на двух примерах: селективном и широкополосном отражателях. На рис. 2 приведены спектральные кривые R, R_s, R_p селективного отражателя, имеющего высокое пропускание с длинноволновой стороны (слои $n_H = 2,3, n_L = 1,34$) при углах падения света 0 и 45°. При наклоне зеркало сохраняет высокую селективность, а именно малые значения R с длинноволновой стороны; сдвит любой точки спектральной кривой основного максимума отражения может быть приблизительно вычислен умножением и на 1,12, т. е. определен по сдвигу экстремума R для систем с n_H/n_L=2,3/1,34. Падение коэффициента отражения R_{max} такого же порядка, как в четвертьволновых зеркалах ZnS-криолит.

На рис. З показаны спектральные кривые отражения $R = (R_s +$ $+R_{p}$)/2 для 15-слойного широкополосного зеркала (слои $n_{H}=2,3;$ $n_L = 1,34$) при угле падения пучка, равном 0° (кривая 1) и 45° (кривая 2). И в этом случае наблюдается хорошее сохранение формы спектральной кривой: характерно некоторое падение коэффициента отражения R — в среднем на 3%. Кривая для 45° сдвинута в коротковолновую часть спектра на величину и=1,12 и.

Приведенные примеры неравнотолщинных систем показывают, что они удовлетворительно работают в наклонных пучках света. При этом сохраняется возможность заранее скомпенсировать сдвиг спектральной кривой зеркала. Однако мы не можем скомпенсировать потери коэффициента отражения, например, увеличением N без иокажения спектральной кривой. В связи с этим возникает вопрос о том, насколько возможно улучшить характеристики зеркала с помощью согласования слоев по толщине, состоящего в компенсации изменений *nh* слоев при наклоне. Согласование достигается пересчетом оптических толщин слоев и замены на значения $n_0 h_0 / \cos \theta$.

Согласование толщин, проводившееся для систем HL ... LH, не привело к улучшению характеристик: коэффициент отражения, ширина области отражения и другие параметры существенно не изменились. В более сложных системах широкополосных зеркал, кривая отражения которых чувствительна к небольшим изменениям толшин слоев, можно ожидать улучшения результатов при согласовании толщин. Авторы провели согласование для угла падения света 45° в системе 15-слойного широкополосного отражателя (кривая 3 на рис. 3). Для лтрямого падения света отражатель имеет $R = 95 \pm 3\%$ в спектральном участке и от 0,96 до 1,72. Из рис. З видно, что согласование позволяет устранить сдвиг спектральной кривой отражения и получить значения коэффициента отражения ($R = 92 \pm 4\%$), более близкие к отражению при нормальном падении света. Однако величина отражения и равномерность R в рабочей области остаются ниже значений при нормальном падении света. Этот факт указывает на недостаточность согласования по толщине, которое не компенсирует изменения френелевских коэффициентов на границах слоев, играющих основную роль. Перспективным в направлении улучшения свойств является синтезирование угловых систем путем варьирования параметров и числа слоев с применением ЭВМ.

Приведенные здесь угловые свойства многослойных отражателей были проверены авторами на многих экспериментальных образцах для видимой, ИК- и УФ-областей спектра. Авторы благодарят А. И. Дмитриева за ломощь в расчетах систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. Крылова Т. Н. Интерференционные покрытия. Л., 1973, с. 85—121. 2. Сухановский В. В. Фазовые характеристики многослойных диэлектрических зеркал.— Оптика и спектроскопия, 1957, 3, выл. 1, с. 90—93. 3. Королев Ф. А., Клементьева А. Ю. Светофильтры высокой контрастности
- на основе многослойных диэлектрических покрытий Оптика и спектроскопия, 1971, 31, вып. 1, с. 138-145.
- 4. Клементьева А. Ю., Тихонравов А. В. Исследование амплитудно-фазовых характеристик диэлектрических зеркал с учетом поглощения в слоях.--Вестн. Моск. ун-та. Физ., астрон., 1978, 19, № 3, с. 75-81.

Поступила в редакцию 15.09.78