чем на четыре порядка. Эти результаты дают основания что учет эффекта экранирования в данной задаче необходим. Как было показано, в работе [3], наши результаты совпадают с результатами работы [2] в случае предельно больших энергий ионизации. Как следует из уравнений (11), (12) и (7), предельный переход $E \rightarrow -\infty$ одновременно означает $t \longrightarrow \infty$, $t' \longrightarrow \infty$ и $\widetilde{\xi}_{\pi}(0) \longrightarrow \infty$. В рамках принятых нами предположений $\tilde{\xi}_{\pi}(\mathbf{r})$ не может превышать величину порядка 10²² см⁻³, поскольку при таких концентрациях начинают действовать межатомные силы отталкивания. Оценка по формуле (7) показывает, что в случае $N_{\rm m} \sim 10^{18}~{\rm cm}^{-3}$ это равносильно ограничению: t << 15. Еще более жесткое ограничение связано с условиями применимости метода эффективной массы: в материале с параметрами германия ограничение на энергию |E| < 0,1 эВ равносильно t < 8,25, если $r_0 = 3,16 \cdot 10^{-7}$ см, и t < 5,5, если $r_0 = 10^{-6}$ см. В работе [2] показано, что в случае предельно больших энергий оптимальное скопление имеет линейный размер, существенно меньший, чем область локализации электрона. Из наших результатов следует, что линейный размер мальной флуктуации может быть сравним с радиусом экранирования r_0 . Атомы примеси в скоплении распределены неравномерно; форма распределения плавно изменяется с ростом энергии ионизации. Меньшим энергиям при прочих равных условиях соответствуют более «размазанные» скопления, а большим энергиям — более сконцентрированные в центре. Изменение вида $\xi_{\pi}(r)$ с ростом энергии ионизации можно проследить по формуле (7), увеличивая параметр t'.

В заключение автор выражает свою глубокую благодарность В. Л. Бонч-Бруевичу за постоянное внимание и помощь в работе.

СПИСОК ЛИТЕРАТУРЫ

[1] Лифшиц И. М. Теория флуктуационных уровней в неупорядоченных системах: — ЖЭТФ, 1967, 53, № 2 (8), с. 743—758. [2] Шкловский Б. И., Эфрос А. Л. Глубокие хвосты плотности состояний и поглощение света в полупроводниках. — ЖЭТФ, 1970, 58, № 2, с. 657—665. [3] Бурбаева Н. В. Глубокий хвост плотности состояний в сильнолегированном вырожденном полупроводнике. — Деп. ВИНИТИ, № 1167—79, от 3.04.79 г.

Поступила в редакцию 16.04.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, т. 22, № 2

УДК 669.017.3

РАСПАД β-ТВЕРДОГО РАСТВОРА В СПЛАВАХ Zr c Nb, Mo, Al, V

М. И. Захарова, А. А. Аминов

(кафедра физики твердого тела)

Цирконий представляет большой интерес для атомной техники благодаря малому сечению захвата тепловых нейтронов. Для получения материалов с высокой прочностью, пластичностью и антикоррозионной стойкостью цирконий легируют ниобием, алюминием, молибденом и другими элементами [1].

В данной работе проводилось исследование фазовых превращений в сплавах циркония с ниобием, алюминием, молибденом, ванадием, в которых из ОЦК в-твердого раствора выделяются фазы с различны-

ми механизмами их образования.

Сплавы изготавливались в дуговой печи в атмосфере очищенного аргона. Для получения однородности состава по сечению слитков каждый сплав переплавлялся щесть раз. Исходными материалами служили металлы чистотой: цирконий — 99,8%, алюминий — 99,99, ниобий — 99,85, молибден — 99,7, ванадий — 98,9%. Состав исследованных сплавов приведен в табл. 1.

Исследование проводилось методами дифракции рентгеновских лучей на поли- и монокристаллах, методом дифракции электронов и электронной микроскопии. Монокристаллы для рентгеноанализа и фольги для электронной микроскопии изготавливались путем электро-

полировки.

Структурные превращения в ОЦК β-твердом растворе изучались в процессе изотермического отпуска при температурах 350—850° С. Для получения однофазного β-твердого раствора сплавы нагревались 1 ч при 1100° С и закаливались в масло. Нагрев и закалка, а также отпуск сплавов проводились в вакууме 2·10⁻⁵ мм рт. ст.

В данной работе выделение ω - и α -фаз при низких температурах отпуска определялось методом рентгеноанализа монокристаллов. Монокристаллы после каждого времени отпуска ориентировались направлениями <110> или <100> параллельно рентгеновскому лучу. Экспериментальные рентгенограммы сравнивались со схемами рентгенограмм, в которых положения ω и α -рефлексов были рассчитаны для

Zr	Nb			
1		Mo	A1	v
75,5	_	10,5	14,0	_
77,0	10,5	5,5		7,0
	75,5 77,0	75,5 — — — — — — — — — — — — — — — — — —	$\begin{array}{c c c c} 75,5 & - & 10,5 \\ 77,0 & 10,5 & 5,5 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Рис. 1. Элементарная ячейка ω2-фазы

обеих ориентаций β -кристаллов [2]. Рентгенограммы снимались на смещанном излучении K_{α} Мо.

Исследование структурных превращений в сплаве Zr—Mo—Al. После закалки сплава с 1100° С на дебаеграмме и рентгенограмме неподвижного монокристалла имеются отражения только неупорядоченного ОЦК β-твердого раствора. После 15 ч отпуска при 350° С на дебаеграмме обнаруживаются слабые сверхструктурные линии, свидетельствующие об упорядочении атомов в β-матрице по типу CsCl. На микроэлектронограммах (110)_β и (131)_β кроме отражений β-твердого раствора имеются рефлексы гексагональной омега-фазы. Появление сверхструктурных рефлексов указывает на упорядоченность атомов в омега-фазе. Сверхструктурные рефлексы сохранились и после наклона фольги на 2—6°, что свидетельствует о том, что эти рефлексы

возникают не за счет двойной дифракции. Сверхструктурные рефлексы ω -фазы имеются и на рентгенограммах неподвижных монокристаллов. Анализ микроэлектронограмм и рентгенограмм позволил определить, что элементарная ячейка упорядоченной ω -фазы (ω 2) содержит шесть атомов вместо трех в неупорядоченной ω -фазе и ее постоянные равны: a=4,98 Å, c=5,96 Å. На рис. 1 представлена элементарная ячейка ω 2-фазы. На рис. 2 приведена микроэлектронограмма (110) $_{\beta}$ с рефлексами β -твердого раствора и ω 2-фазы.

Омега-фаза образуется путем сдвига атомов в β -решетке в направлениях <111>[3]. Формирование ω -фазы происходит в том интерва-

Рис. 2. Схема микроэлектронограммы плоскости (110)β (a); экспериментальная микроэлектронограмма сплава Zr—Mo—Al после 15 ч отпуска при 350°C (δ)

ле температур, в котором упругая константа C', равная $(C_{11}-C_{12})/2$, понижается. Упорядоченная $\omega 2$ -фаза обнаружена в металлических

сплавах впервые.

Интенсивность рефлексов ω 2-фазы на рентгенограмме монокристалла возрастает с увеличением времени отпуска при 350°С до 30 и 45 ч. Отпуск 5 и 15 ч при 450°С приводит к выделению ω 2- и α -фаз (табл. 2). Отсутствие рефлексов интерметаллических соединений после 15 ч отпуска при 450°С указывает на малую скорость их формирования. Поэтому дальнейшее исследование структурных превращений в сплаве Zr—Мо—А1 проводилось при температуре отпуска 750°С.

Как видно из табл. 2, после 4 ч отпуска при 750° С из β -матрицы выделяются фазы α и $ZrMo_2$, а после 25 ч и 50 ч кроме α и $ZrMo_2$ выделяется соединение Zr_3Al . Картина микродифракции электронов показывает, что α -фаза в фольгах сдвойникована по плоскости (1012) и направлению [1011]. Двойникование α -фазы в циркониевых сплавах происходит, как показано в работе [4], при электролитическом утончении фольг (рис. 3).

Более высокая кинетика выделения α -фазы в данном сплаве по сравнению с интерметаллическими соединениями $ZrMo_2$ и Zr_3Al определяется тем, что зародыши α -фазы, так же как и ω -фазы, образуются по сдвиговому механизму [5]. Образование зародышей соединений $ZrMo_2$ и Zr_3Al и их рост происходят по диффузионному механизму.

Фазовый состав сплава Zr — 10,5% Мо — 14% Al по данным рентгеноанализа моно-(РМ), поликристаллов (РП) и микродифракции электронов (МЭ)

Температу. ра отпуска, °C		·			Ë	ремя отпуска	Время отпуска сплава, закаленного с 1100°С	ного с 1100°С				
	0	4 4	5 4		10 ч	15 4		25 ч	30 ч	45 ч	50 ч	
350	8					β+ω5			β+ω2	β+ω2		PM
-						β+ω2			β+ω2	β+ω2		еш
į			β+ω2+α	+α		β+ω5+α						PM
450			β+ω2	83		β+ω5+α	75					EW
C L	β β+	$\left \beta+\alpha+Z_{\Gamma}Mo_{2}\right $					β+α -	$\beta + \alpha + ZrMo_2 + + Zr_3A1$			$\alpha + ZrMo_3 + Zr_8Al$	ЬΠ
0.00					β+α2		<u>-</u>	β+α2.			$a2+ZrMo_2+Zr_3Al$	ЕМ
C			$\beta + \alpha + Z_r Mo_2 + + Z_r _3 A_1$	Mo ₂ +		$^{\alpha+Z_{\Gamma}Mo_{2}+}_{+Z_{\Gamma_{3}}A_{1}}$						ЫП
000	- ; :		$\beta + \alpha + \alpha 2$	α2		a2+ZrMo2						еш
Температу- ра нагрева, °C			s.		B	емя нагрева с	Время нагрева сплава после кристаллизации	исталлизации				
	0	4) 	ь 6	З5 ч	т 22	н 201	150 ч	и 271	4	210 ч	ΡM
550	β+Zr ₂ A1	$\begin{vmatrix} \beta + \alpha + \alpha + \\ + Z r_2 A 1 \end{vmatrix}$		$\beta + \alpha + + Z_{r_2}A_1$	$\beta + \alpha + + Zr_2A1$	$\begin{vmatrix} \beta + \alpha + \\ + Z_{12}A_1 \end{vmatrix}$	$\begin{vmatrix} \beta + \alpha + \\ + Z r_2 A 1 + \\ + Z r_3 A 1 \end{vmatrix}$	$\begin{array}{c} \beta + \alpha + \\ Zr_2Al + \\ + Zr_3Al \end{array}$	$\begin{vmatrix} \beta + \alpha + Z r_2 A 1 + \\ + Z r_3 A 1 \end{vmatrix}$	Zr2A1+	$\beta + \alpha + Z_{\Gamma_2}A^1 + Z_{\Gamma_3}A^1$	PM
	β+Zr ₂ Al	1 β+Zr ₂	Zr ₂		β+Zr ₂ Al+ +ΓĽΚ		8+Zr ₂ Al+ +rūk					ЖЭ

Исследование при температуре отпуска 850° С показывает, что при этой температуре фазовые превращения происходят с очень большой скоростью, после 5 ч из β -матрицы выделяются фазы α , $ZrMO_2$ и Zr_3Al . Увеличение времени отпуска при 850° С до 15 ч приводит к исчезновению на дебаеграмме линий β -твердого раствора.

Исследование обратного растворения Zr_2Al при температуре 550°С. При охлаждении сплава Zr—Mo—Al в процессе кристаллизации из β -матрицы выделяется соединение Zr_2Al , которое ухудшает свойства сплавов Zr с Al. Для оптимального использования сплавов Zr с Al в

Рис. 3. Микроэлектронограмма (001) в с с рефлексами а2-фазы

Рис. 4. Рентгенограмма монокристалла сплава Zr—Mo—Al после 210 ч нагрева при 550°C. Ориентация (011) в ||X-лучу

энергетических ядерных реакторах присутствие в сплаве Zr_2Al нежелательно. Поэтому представляет большой интерес исследование обратного растворения соединения Zr_2Al в β -матрице, которое проводилось после нагрева сплава при температуре 550°C.

После кристаллизации сплава на рентгенограмме монокристалла имеются рефлексы ОЦК β -твердого раствора и соединения Zr_2Al . После 4, 9, 35 и 75 ч нагрева сплава при 550° C на рентгенограмме монокристалла имеются отражения β , α и Zr_2Al (см. табл. 2). При увеличении времени нагрева до 105, 150 и 210 ч на рентгенограмме монокристалла, кроме того, появляются дебаевские кольца соединения Zr_3Al (рис. 4). Рефлексы соединения Zr_2Al не исчезают даже после 210 ч нагрева. Поэтому для растворения Zr_2Al целесообразно закаливать сплавы Zr с Al с $1000^\circ-1100^\circ$ C и затем подвергать отпуску при температуре 750° C для выделения из β -твердого раствора Zr_3Al .

Исследование структурных состояний в сплаве Zr—Nb—Mo—V. После кристаллизации, а также после закалки сплава с 1100°С на рентгенограмме монокристалла и на микроэлектронограмме имеются только рефлексы β-твердого раствора и диффузные дужки, которые указывают на возникновение линейных дефектов в β-матрице. Однако линейные дефекты по направлениям <111> не коррелированы, и поэтому в этом сплаве не образуется по сдвиговому механизму метастабильная ω-фаза. Структура сплава не изменяется после 1, 4, 5 и 8 ч отпуска при 350°С. После 15 и 25 ч отпуска из β-матрицы выделяются кристаллы α-фазы (табл. 3).

Фазовый состав сплава Zr-10,5 % Nb-5,5 % Mo-7 % V по данным рентгеноанализа моно-(РМ), поликристаллов (РП) и микродифракции электронов (МЭ)

Температу- ра отпус- ка, °C						Время отпуска сплава, закаленного с 1100°С	ска спла	ва, закал	ленного с	1100°C					
	0	20 мвн	45 мян	1 4	90 мин	ъе]	4 4	5 4	Б 9	л 2	80 D	15 ч	25 ч	65 ч	}
350	β+д.д.			β+ д. д.	,			β+ д. д.				β+α	β+α		ЬМ
	в+д.д.			-			β+ μ. μ.		,		β+ μ. μ.				ew.
		-			·	β+α			β+α					β+α	ЬМ
004				;	- 1	p+g			$\beta + \alpha$					β+α₂ MЭ	ew
		β+α+ p. м.	β+α+ p. м.		β+α+ р. м.	$\begin{vmatrix} \beta + \alpha + \\ + Z_{\Gamma} Mo_2 \end{vmatrix}$				$\beta + \alpha + + Z_r Mo_2$		$\beta + \alpha + + ZrMo_3$			PM
750				β+α						$\beta + \alpha + \beta + Z_{rMo_2}$					ЕМ
									ļ	$\beta + \alpha + + ZrMo_2$			β+α+ZrMos+ +ZrVs		PH
							1								

Фазовый состав сплава после дополнительного отпуска при 550°C образцов, отпуниенных предварительно 65 и при 450°C

отпущенимх предварительно бо ч при 450°С	120 ч 160 ч 210 ч	$\beta+lpha+p$. м. $\beta+lpha+p$. м. $\beta+lpha+p$. м. $\beta+lpha+p$. м. PM	β+α2 MЭ
щенных предв	ь 09	β+α+р. м.	β+α
ormy	30 ч	β+α	
		550	,, ====================================

д. д. — диффуэные дужки, р. м. — размытые максимумы.

Температура отпуска (°C)	Время отпуска (мин, ч)	Поперечные размеры кристаллов ZrMo ₂ (Å)
. 550	60 ч 120 ч 160 ч 210 ч	22 27 27 27 36
750	20 мин 45 мин 3 ч	28 37 92

Отпуск сплава в течение 65 ч при 450°C привел к выделению из в-матрицы только α-фазы, поэтому образны сплава Zr-Nb-Mo-V, отпушенные 65 ч при 450°C, подвергались последующему отпуску при 550°С. На рентгенограмме монокристалла после 60 ч отпуска при 550°C появляются размытые максимумы второй выделяющейся фазы. С увеличением времени отпуска до 120, 160 и 210 и размытость максимумов сохраняется, что позволило вычислить поперечные размеры выделяющихся кристаллов.

Эти размеры изменяются за время отпуска 60—210 ч от 22 до 36Å (табл. 4). По межплоскостным расстояниям было определено, что

диффузные максимумы относятся к соединению ZrMo2.

Таким образом, и при 550° С соединение ZгMo₂ выделяется очень медленно, и поэтому дальнейшее исследование распада матрицы производилось при температуре 750° С. После отпуска сплава в течение 20 мин на рентгенограмме монокристалла кроме интенсивных рефлексов β-матрицы и α-фазы имеются слабые размытые рефлексы ZгMo₂. После увеличения времени отпуска до 45 мин и 1 ч 30 мин рефлексы ZrMo₂ на рентгенограмме монокристалла остаются размытыми. Размеры кристаллов ZrMo₂ за время отпуска 20 мин — 1 ч 30 мин увеличиваются от 30 до 90 Å (табл. 4).

После 7 и 15 ч отпуска при 750° С рефлексы соединения $ZrMo_2$ на рентгенограмме монокристалла становятся более четкими. Данные дифракции электронов подтверждают результаты рентгеноанализа. Таким образом, после 15 ч отпуска при 750° С сплав Zr—Nb—Mo—V находится в трехфазном состоянии $\beta + \alpha + ZrMo_2$. Дальнейшее увеличение времени отпуска при 750° С до 25 ч приводит к появлению на дебаеграмме кроме линий β , α и $ZrMo_2$ линий соединения ZrV_2 (см. табл. 3).

Заключение. Как показало данное исследование, зародыши метастабильной ω^2 - и равновесной α -фазы образуются по сдвиговому механизму, и поэтому кинетика выделений этих фаз очень высокая даже при низких температурах отпуска.

Кристаллы соединений ZrMo₂, Zr₃Al и ZrV₂ формируются по диффузионному механизму. Поэтому соединение ZrMo₂ в сплаве Zr—Nb——Мо—V даже после 210 ч отпуска при 550°C имеет размеры, измеряе-

мые только десятками ангстрем.

Скорость выделения $ZrMo_2$ по результатам рентгеновского исследования сплавов Zr-Mo-Al и Zr-Nb-Mo-V выше, чем соединений Zr_3Al , ZrV_2 . Так как механизм образования и структура всех трех соединений одинаковые (ГЦК), то различие в скорости их выделения определяется, по всей вероятности, разницей в коэффициентах диффузии молибдена, алюминия и ванадия в β -цирконии. Данные работы [6] подтверждают это предположение. Коэффициент диффузии молибдена в α -цирконии составляет $6.22 \cdot 10^{-8}$ см²/с, а для ванадия $D=-1.22 \cdot 10^{-8}$ см²/с. Хотя эти данные относятся к диффузии в α -цирконии, есть основания считать, что коэффициент диффузии Мо и в β -цирконии также выше, чем ванадия.

При исследовании сплава Zr-Mo-Al впервые установлено выде-

ление упорядоченной ω 2-фазы с отношением осей c/a=1,24 из упорядоченного β -твердото раствора.

Структурный механизм превращений в сплаве Zr—Nb—Mo—V

следующий:

$$\beta \rightarrow \beta + \alpha \rightarrow \beta + \alpha + ZrMo_2 \rightarrow \beta + \alpha + ZrMo_2 + ZrV_2$$
.

СПИСОК ЛИТЕРАТУРЫ

[1] Займовский А. С. Циркониевые сплавы в ядерной энергетике. — Атомная энергия, 1978, 45, с. 430—433. [2] Хатанова Н. А., Захарова М. И., Киров С. А. Расчет рефлексов ω-фазы на теоретических рентгенограммах неподвижных монокристаллов титановых и царкониевых сплавов. — Заводская лаборатория, 1977, 43, с. 1083—1089. [3] Sass S. L. The structure and decomposition of zirconium and titanium BCC solid solution. — J. Less Common Metals, 1972, 28, р. 157—159. [4] Захарова М. И., Киров С. А., Хунджуа А. Г. Формирование фаз, выделяющихся из β-твердого раствора в сплавах на основе циркония. — Физ. мет. и металловедение, 1978, 46, с. 346—353. [5] Мс Quillam М. Phase transformation in titanium and its alloys. — Мет. Rev., 1963, 8, р. 42—46. [6] Свойства элементов. Под ред. Г. В. Самсонова. М., 1976, с. 1—33.

Поступила в редакцию 20.04.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, т. 22, № 2

УДК 535.373.132

делокализация электронных примесных возбуждений в ваѕ—ві-фосфорах

Е. П. Ефанова

(кафедра квантовой теории)

Процесс делокализации примесных возбуждений наиболее подробно изучен для щелочно-галоидных кристаллов, активированных ртутеподобными ионами. В работе [1] показано, что при возбуждении в C-полосе активаторного поглощения, соответствующей электронному переходу ${}^1S_0 \rightarrow {}^1P_1$ в ртутеподобном ионе, осуществляется ионизация части центров свечения. Процесс ионизации локальных центров обнаружен также для A- и C-возбуждений в CaS, активированном ртутеподобными ионами [1, 2]. В [1] подчеркивается, что во всех упомянутых случаях не имеет места прямая оптическая ионизация центров, а осуществляется термоионизация или автононизация системы, предварительно перешедшей в A- или C-возбужденное состояние.

Делокализация обнаруживается по появлению процессов, в которых принимает участие кристаллическая решетка, таких как: рекомбинационная люминесценция, электронная и дырочная проводимость, создание электронных и дырочных центров окраски и т. д.

В настоящей работе путем рассмотрения характеристик инфракрасной стимуляции вспышки были исследованы процессы делокализации электронных возбуждений кристаллофосфоров BaS—Bi, проявляющиеся в образовании центров окраски.

Исследование вспышечных свойств фосфора проводилось на установке, состоящей из трех монохроматоров. Через монохроматор ДМР4 велось возбуждение, через ИКС12 — ИК-стимуляция. Свечение регистрировалось ФЭУ-79 через монохроматор ЗМР3. В качестве источника возбуждающего света использовалась ксеноновая лампа ДКсШ-1000. В качестве источника стимулирующего ИК-излучения