чем на четыре порядка. Эти результаты дают основания полагать, что учет эффекта экранирования в данной задаче необходим. Как было показано, в работе [3], наши результаты совпадают с результатами работы [2] в случае предельно больших энергий ионизации. Как следует из уравнений (11), (12) и (7), предельный переход E→-∞ одновременно означает $t \rightarrow \infty$, $t' \rightarrow \infty$ и $\xi_{\pi}(0) \rightarrow \infty$. В рамках принятых нами предположений $\xi_{\pi}(\mathbf{r})$ не может превышать величину порядка 10²² см-3, поскольку при таких концентрациях начинают действовать межатомные силы отталкивания. Оценка по формуле (7) показывает, что в случае $N_{\rm m} \sim 10^{18}$ см $^{-3}$ это равносильно ограничению: t <<15. Еще более жесткое ограничение связано с условиями применимости метода эффективной массы: в материале с параметрами германия ограничение на энергию |E| < 0,1 эВ равносильно t < 8,25, если $r_0 = = 3,16 \cdot 10^{-7}$ см, и t < 5,5, если $r_0 = 10^{-6}$ см. В работе [2] показано, что в случае предельно больших энергий оптимальное скопление имеет линейный размер, существенно меньший, чем область локализации электрона. Из наших результатов следует, что линейный размер оптимальной флуктуации может быть сравним с радиусом экранирования ro. Атомы примеси в скоплении распределены неравномерно; форма распределения плавно изменяется с ростом энергии ионизации. Меньшим энергиям при прочих равных условиях соответствуют более «размазанные» скопления, а большим энергиям -- более сконцентрированные в центре. Изменение вида $\xi_{\pi}(r)$ с ростом энергии ионизации можно проследить по формуле (7), увеличивая параметр t'.

В заключение автор выражает свою глубокую благодарность В. Л. Бонч-Бруевичу за постоянное внимание и помощь в работе.

СПИСОК ЛИТЕРАТУРЫ

[1] Лифшиц И. М. Теория флуктуационных уровней в неупорядоченных системах. — ЖЭТФ, 1967, 53, № 2 (8), с. 743—758. [2] Шкловский Б. И., Эфрос А. Л. Глубокие хвосты плотности состояний и поглощение света в полупроводниках. — ЖЭТФ, 1970, 58, № 2, с. 657—665. [3] Бурбаева Н. В. Глубокий хвост плотности состояний в сильнолегированном вырожденном полупроводнике. — Деп. ВИНИТИ, № 1167—79, от 3.04.79 г.

Поступила в редакцию 16.04.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, т. 22, № 2

УДК 669.017.3

РАСПАД В-ТВЕРДОГО РАСТВОРА В СПЛАВАХ Zr с Nb, Mo, Al, V

М. И. Захарова, А. А. Аминов

(кафедра физики твердого тела)

Цирконий представляет большой интерес для атомной техники благодаря малому сечению захвата тепловых нейтронов. Для получения материалов с высокой прочностью, пластичностью и антикоррозионной стойкостью цирконий легируют ниобием, алюминием, молибденом и другими элементами [1].

В данной работе проводилось исследование фазовых превращений в сплавах циркония с ниобнем, алюминием, молибденом, ванадием, в которых из ОЦК β-твердого раствора выделяются фазы с различными механизмами их образования. Сплавы изготавливались в дуговой печи в атмосфере очищенного аргона. Для получения однородности состава по сечению слитков каждый сплав переплавлялся шесть раз. Исходными материалами служили металлы чистотой: цирконий — 99,8%, алюминий — 99,99, ниобий — 99,85, молибден — 99,7, ванадий — 98,9%. Состав исследованных сплавов приведен в табл. 1.

Исследование проводилось методами дифракции рентгеновских лучей на поли- и монокристаллах, методом дифракции электронов и электронной микроскопии. Монокристаллы для рентгеноанализа и фольги для электронной микроскопии изготавливались путем электрополировки.

Структурные превращения в ОЦК β-твердом растворе изучались в процессе изотермического отпуска при температурах 350—850° С. Для получения однофазного β-твердого раствора сплавы нагревались 1 ч при 1100° С и закаливались в масло. Нагрев и закалка, а также отпуск сплавов проводились в вакууме 2.10⁻⁵ мм рт. ст.

В данной работе выделение ω- и α-фаз при низких температурах отпуска определялось методом рентгеноанализа монокристаллов. Монокристаллы после каждого времени отпуска ориентировались направлениями <110> или <100> параллельно рентгеновскому лучу. Экспериментальные рентгенограммы сравнивались со схемами рентгенограмм, в которых положения ω и α-рефлексов были рассчитаны для

· .	<u> </u>	держани	е элемен	нтов, в а	r. %	
Сплав	Zr	Nb	Мо	A1	v	
Zr—Mo—Al	75,5	_	10,5	14,0	· <u> </u>	4 A
Zr-Nb-Mo-V	77,0	10,5	5,5		7,0	
	•	· · ·	•	· ·		

Таблица 1

Рис. 1. Элементарная ячейка ш2-фазы

обеих ориентаций β-кристаллов [2]. Рентгенограммы снимались на смешанном излучении К_αМо.

Исследование структурных превращений в сплаве Zr—Mo—Al. После закалки сплава с 1100°С на дебаеграмме и рентгенограмме неподвижного монокристалла имеются отражения только неупорядоченного ОЦК β -твердого раствора. После 15 ч отпуска при 350°С на дебаеграмме обнаруживаются слабые сверхструктурные линии, свидетельствующие об упорядочении атомов в β -матрице по типу CsCl. На микроэлектронограммах (110)_{β} и (131)_{β} кроме отражений β -твердого раствора имеются рефлексы гексагональной омега-фазы. Появление сверхструктурных рефлексов указывает на упорядоченность атомов в омега-фазе. Сверхструктурные рефлексы сохранились и после наклона фольги на 2—6°, что свидетельствует о том, что эти рефлексы

●-Mo ■-Zr

0-AI

возникают не за счет двойной дифракции. Сверхструктурные рефлексы ω -фазы имеются и на рентгенограммах неподвижных монокристаллов. Анализ микроэлектронограмм и рентгенограмм позволил определить, что элементарная ячейка упорядоченной ω -фазы (ω 2) содержит шесть атомов вместо трех в неупорядоченной ω -фазе и ее постоянные равны: a=4,98 Å, c=5,96 Å. На рис. 1 представлена элементарная ячейка ω 2-фазы. На рис. 2 приведена микроэлектронограмма (110)_в с рефлексами β -твердого раствора и ω 2-фазы.

Омега-фаза образуется путем сдвига атомов в β-решетке в направлениях <111> [3]. Формирование ω-фазы происходит в том интерва-

Рис. 2. Схема микроэлектронограммы плоскости (110) (а); экспериментальная микроэлектронограмма сплава Zr--Mo--Al после 15 ч отпуска при 350°С (б)

ле температур, в котором упругая константа C', равная $(C_{11}-C_{12})/2$, понижается. Упорядоченная ω^2 -фаза обнаружена в металлических сплавах впервые.

Интенсивность рефлексов ω^2 -фазы на рентгенограмме монокристалла возрастает с увеличением времени отпуска при 350° С до 30 и 45 ч. Отпуск 5 и 15 ч при 450° С приводит к выделению ω^2 - и α -фаз (табл. 2). Отсутствие рефлексов интерметаллических соединений после 15 ч отпуска при 450° С указывает на малую скорость их формирования. Поэтому дальнейшее исследование структурных превращений в сплаве Zr—Mo—A1 проводилось при температуре отпуска 750° С.

Как видно из табл. 2, после 4 ч отпуска при 750° С из β -матрицы выделяются фазы α и ZrMo₂, а после 25 ч и 50 ч кроме α и ZrMo₂ выделяется соединение Zr₃Al. Картина микродифракции электронов показывает, что α -фаза в фольгах сдвойникована по плоскости (1012) и направлению [1011]. Двойникование α -фазы в циркониевых сплавах происходит, как ноказано в работе [4], при электролитическом утончении фольг (рис. 3).

Более высокая кинетика выделения α-фазы в данном сплаве по сравнению с интерметаллическими соединениями ZrMo₂ и Zr₃Al определяется тем, что зародыши α-фазы, так же как и ω-фазы, образуются по сдвиговому механизму [5]. Образование зародышей соединений ZrMo₂ и Zr₃Al и их рост происходят по диффузионному механизму.

•	÷ ě	азовый сос	Tab chuaba Zr —	-10,5% Мс	о — 14% мнкроди	АІ по дан фракции эз	ным рентген Лектронов (1	іоанализа моі МЭ)	ю-(РМ), по	олнкриста	табли ллов (РП)	la 2
Температу- ра отпуска, °С					Вреия	я отпуска спл	гава, закалені	Horo c 1100°C				
	0	4 ч	5 ч	10		15 ч		25 ч	30 ч	45 ч	50 ч	
350	8					β+ω2			β+ω2	β+ω2		Wd
	9		-			₿+w2			β+ω2	β+ω2		EW
0.1			$\beta+\omega 2+\alpha$	 		β+ω2+α						ΡM
450	 		β+ω2			β+ω2+α	 					EW
С Ц Ц	в 	$+\alpha + ZrMo_2$		 			8 	+ZrMo ₂ + +Zr ₃ Al			a+ZrMo ₂ +Zr ₈ Al	Ы
007				β+α	2		α 	}+α2			a2+ZrMo2+Zr2AI	ЕW
			$\beta + \alpha + ZrMo_2 + + Zr_3A1$		ö	:+ZrMo ₂ + +Zr ₃ Al						Цď
000			$\beta + a + a2$			12+ZrMo2						EW
Температу- ра нагрева,				- - - -	Время	нагрева спл	ава после кри	сталлвзации				
	0	4	н 6 н	35	н	75 ч	105 ч	150 ч	175	5	210 ч	Wd
550	β+Zr ₂ A		$\frac{a+b}{2}$ $\beta + \frac{b+a+b}{2}$	β+ +Zr		$\frac{3+\alpha+}{+Zr_2A1}$	$\frac{\beta+\alpha+}{+Zr_2Al+}$	$\begin{array}{c} b+lpha+\\ Zr_2Al+\\ +Zr_3Al\end{array}$	$\beta + \alpha + Z_1 + Z_1 + Z_1$	Zr2A1+	$\beta + \alpha + Zr_{3}Al + Zr_{3}Al$	Wd
-	β+Zr ₂ A	1 B+2	Zr ₂		2AI+	6	+Zr ₂ Al+ +Fuk					ЕW

Исследование при температуре отпуска 850° С показывает, что при этой температуре фазовые превращения происходят с очень большой скоростью, после 5 ч из β-матрицы выделяются фазы α, ZrMO₂ и Zr₃Al. Увеличение времени отпуска при 850° С до 15 ч приводит к исчезновению на дебаеграмме линий β-твердого раствора.

Исследование обратного растворения Zr₂Al при температуре 550°C. При охлаждении сплава Zr—Mo—Al в процессе кристаллизации из β-матрицы выделяется соединение Zr₂Al, которое ухудшает свойства сплавов Zr с Al. Для оптимального использования сплавов Zr с Al в

Рис. 3. Микроэлектронограмма (001) в с рефлексами а2-фазы

Рис. 4. Рентгенограмма монокристалла сплава Zr—Mo—Al после 210 ч нагрева при 550°С. Ориентация (011) в ||Х-лучу

энергетических ядерных реакторах присутствие в сплаве Zr_2Al нежелательно. Поэтому представляет большой интерес исследование обратного растворения соединения Zr_2Al в β -матрице, которое проводилось после нагрева сплава при температуре 550°С.

После кристаллизации сплава на рентгенограмме монокристалла имеются рефлексы ОЦК β -твердого раствора и соединения Zr₂Al. После 4, 9, 35 и 75 ч нагрева сплава при 550° С на рентгенограмме монокристалла имеются отражения β , α и Zr₂Al (см. табл. 2). При увеличении времени нагрева до 105, 150 и 210 ч на рентгенограмме монокристалла, кроме того, появляются дебаевские кольца соединения Zr₃Al (рис. 4). Рефлексы соединения Zr₂Al не исчезают даже после 210 ч нагрева. Поэтому для растворения Zr₂Al целесообразно закаливать сплавы Zr с Al с 1000°—1100° С и затем подвергать отпуску при температуре 750° С для выделения нз β -твердого раствора Zr₃Al.

Исследование структурных состояний в сплаве Zr—Nb—Mo—V. После кристаллизации, а также после закалки сплава с 1100°С на рентгенограмме монокристалла и на микроэлектронограмме имеются только рефлексы β -твердого раствора и диффузные дужки, которые указывают на возникновение линейных дефектов в β -матрице. Однако линейные дефекты по направлениям <111.> не коррелированы, и поэтому в этом сплаве не образуется по сдвиговому механизму метастабильная ω -фаза. Структура сплава не изменяется после 1, 4, 5 и 8 ч отпуска при 350°С. После 15 и 25 ч отпуска из β -матрицы выделяются кристаллы α -фазы (табл. 3). Таблица 3

Фазовый состав сплава Zr-10,5 % Nb-5,5 % Mo-7 % V по данным рентеноанализа моно-(PM), поликристаллов (PII) и микродифракции электронов (MЭ)

Температу- ра отпус- ка, °С						Время отпу	иска спла	тва, зака	ленного	0.1100°C					
	0	20 мвн	45 MBH	1 ч	ним 06	Зч	4 ч	5 4	<u>.</u> Э. Б. 9	7 ч	ъ 8	15 ч	25 y	65 4	
350	β+д.д.			н 19 19 14				н н н н н				β+α	β+a		Wd
	в+д.д.] β+ д. д.				β+ д. д.				ЕW
					- 	β+α			β+α					β+α	Wd
004			 	:		β+α`			β+α					$\beta + \alpha_2$	EW
		β+α+ p. m.	β+α+ p. m.		β+α+ p. м.	$\begin{vmatrix} \beta + \alpha + \\ + ZrMo_2 \end{vmatrix}$				$\frac{\beta + \alpha +}{+ ZrMo_2}$		$\beta + \alpha + + ZrMo_{3}$			Md
750				β+α						β+α+ +ZrMo2					еw
	_									β+α+ +ZrMo₂			$\beta + \alpha + ZrMo_{s} + $ +ZrV _s		Ц
Фа	กละเช้ คุกค	гар ондана		IL STRUCT	THORO OFFICE	CV9 UDW 5	50°C 06								

Разовый состав сплава после дополнительного отпуска при 550°С образцов, отпущенных предварительно 65 ч при 450°С

	30 ч	60 ч	120 ч	160 ч	210 ч	
20	β+α	<u>β+а+р. м.</u>	β+α+p. м.	β+α+p. m.	β+α+p. м.	Wd
		β+α		β+α2		ЕW
- T - T	н - диффузные	дужки, р. м.	— размытые	H MaKCHMYMbI.	_	

63

Таблица 4

Температура отпуска (°С)	Время отпуска (мин, ч)	Поперечные размеры крис- таллов ZrMo _z (Å)
550	60 ч 120 ч 160 ч 210 ч	22 27 27 36
750	20 мин 45 мин 3 ч	28 37 92

Отпуск сплава в течение 65 ч при 450°C привел к выделению из β-матрицы только α-фазы, поэтому образцы сплава Zr-Nb-Mo-V, отпушенные 65 ч при 450°С, подвергались последующему отпуску при 550°С. На рентгенограмме монокристалла после 60 ч отпуска при 550°С появляются размытые максимумы второй выделяющейся фазы. С увеличением времени отпуска до 120, 160 и 210 ч размытость максимумов сохраняется, что позволило вычислить поперечные размеры выделяющихся кристаллов.

Эти размеры изменяются за время отпуска 60—210 ч от 22 до 36Å (табл. 4). По межплоскостным расстояниям было определено, что диффузные максимумы относятся к соединению ZrMo₂.

Таким образом, и при 550° С соединение $ZrMo_2$ выделяется очень медленно, и поэтому дальнейшее исследование распада матрицы производилось при температуре 750° С. После отпуска сплава в течение 20 мин на рентгенограмме монокристалла кроме интенсивных рефлексов β -матрицы и α -фазы имеются слабые размытые рефлексы $ZrMo_2$. После увеличения времени отпуска до 45 мин и 1 ч 30 мин рефлексы $ZrMo_2$ на рентгенограмме монокристалла остаются размытыми. Размеры кристаллов $ZrMo_2$ за время отпуска 20 мин — 1 ч 30 мин увеличиваются от 30 до 90 Å (табл. 4).

После 7 и 15 ч отпуска при 750°С рефлексы соединения ZrMo₂ на рентгенограмме монокристалла становятся более четкими. Данные дифракции электронов подтверждают результаты рентгеноанализа. Таким образом, после 15 ч отпуска при 750°С сплав Zr—Nb—Mo—V находится в трехфазном состоянии $\beta + \alpha + ZrMo_2$. Дальнейшее увеличение времени отпуска при 750°С до 25 ч приводит к появлению на дебаеграмме кроме линий β , α и ZrMo₂ линий соединения ZrV₂ (см. табл. 3).

Заключение. Как показало данное исследование, зародыши метастабильной ω2- и равновесной α-фазы образуются по сдвиговому механизму, и поэтому кинетика выделений этих фаз очень высокая даже при низких температурах отпуска.

Кристаллы соединений ZrMo₂, Zr₃Al и ZrV₂ формируются по диффузионному механизму. Поэтому соединение ZrMo₂ в сплаве Zr—Nb— —Мо—V даже после 210 ч отпуска при 550°С имеет размеры, измеряемые только десятками ангстрем.

Скорость выделения ZrMo₂ по результатам рентгеновского исследования сплавов Zr—Mo—Al и Zr—Nb—Mo—V выше, чем соединений Zr₃Al, ZrV₂. Так как механизм образования и структура всех трех соединений одинаковые (ГЦК), то различие в скорости их выделения определяется, по всей вероятности, разницей в коэффициентах диффузии молибдена, алюминия и ванадия в β -цирконии. Данные работы [6] подтверждают это предположение. Коэффициент диффузии молибдена в α -цирконии составляет 6,22·10⁻⁸ см²/с, а для ванадия D ==1,22·10⁻⁸ см²/с. Хотя эти данные относятся к диффузии в α -цирконии, есть основания считать, что коэффициент диффузии Мо и в β -цирконии также выше, чем ванадия.

При исследовании сплава Zr-Mo-Al впервые установлено выде-

ление упорядоченной ω^2 -фазы с отношением осей c/a = 1,24 из упорядоченного β -твердого раствора.

Структурный механизм превращений в сплаве Zr--Nb--Мо--V следующий:

 $\beta \rightarrow \beta + \alpha \rightarrow \beta + \alpha + ZrMo_2 \rightarrow \beta + \alpha + ZrMo_2 + ZrV_2$.

СПИСОК ЛИТЕРАТУРЫ

[1] Займовский А.С. Циркониевые сплавы в ядерной энергетике. — Атомная энергия, 1978, 45, с. 430—433. [2] Хатанова Н. А., Захарова М. И., Киров С. А. Расчет рефлексов ω-фазы на теоретических рентгенограммах неподвижных монокристаллов титановых и циркониевых сплавов. — Заводская лаборатория, 1977, 43, с. 1083—1089. [3] Sass S. L. The structure and decomposition of zirconium and titanium BCC solid solution. — J. Less Common Metals, 1972, 28, р. 157—159. [4] Захарова М. И., Киров С. А., Хунджуа А. Г. Формирование фаз, выделяющихся из β-твердого раствора в сплавах на основе циркония. — Физ. мет. и металловедение, 1978, 46, с. 346—353. [5] МсQuillam М. Phase transformation in titanium and its alloys. — Met. Rev., 1963, 8, р. 42—46. [6] Свойства элементов. Под ред. Г. В. Самсонова. М., 1976, с. 1—33.

Поступила в редакцию 20.04.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, т. 22, № 2

УДК 535.373.132

ДЕЛОКАЛИЗАЦИЯ ЭЛЕКТРОННЫХ ПРИМЕСНЫХ ВОЗБУЖДЕНИЙ в Bas-Bi-Фосфорах

Е. П. Ефанова

(кафедра квантовой теории)

Процесс делокализации примесных возбуждений наиболее подробно изучен для щелочно-галоидных кристаллов, активированных ртутеподобными ионами. В работе [1] показано, что при возбуждении в C-полосе активаторного поглошения, соответствующей электронному переходу ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ в ртутеподобном ионе, осуществляется ионизация части центров свечения. Процесс ионизации локальных центров обнаружен также для A- и C-возбуждений в CaS, активированном ртутеподобными ионами [1, 2]. В [1] подчеркивается, что во всех упомянутых случаях не имеет места прямая оптическая ионизация центров, а осуществляется термоионизация или автоионизация системы, предварительно перешедшей в A- или C-возбужденное состояние.

Делокализация обнаруживается по появлению процессов, в которых принимает участие кристаллическая решетка, таких как: рекомбинационная люминесценция, электронная и дырочная проводимость, создание электронных и дырочных центров окраски и т. д.

В настоящей работе путем рассмотрения характеристик инфракрасной стимуляции вспышки были исследованы процессы делокализации электронных возбуждений кристаллофосфоров BaS—Bi, проявляющиеся в образовании центров окраски.

Исследование вспышечных свойств фосфора проводилось на установке, состоящей из трех монохроматоров. Через монохроматор ДМР4 велось возбуждение, через ИКС12 — ИК-стимуляция. Свечение регистрировалось ФЭУ-79 через монохроматор ЗМР3. В качестве источника возбуждающего света использовалась ксеноновая лампа ДКсШ-1000. В качестве источника стимулирующего ИК-излучения

5 ВМУ, № 2, физика, астрономия