УДК 539.2.01

ЭНЕРГИЯ УПОРЯДОЧЕНИЯ В СПЛАВАХ Mg—ln И Mg—Cd, РАСЧЕТ МЕТОДОМ ПСЕВДОПОТЕНЦИАЛА И СОПОСТАВЛЕНИЕ С ЭКСПЕРИМЕНТОМ

А. А. Кациельсон, Л. А. Сафронова, В. М. Силонов

(кафедра физики твердого тела)

Расчету энергий упорядочения в сплавах как простых, так и переходных металлов методом псевдопотенциала в последнее время уделяется большое внимание [1—11]. В работе [11] показано, что знаки параметра ближнего порядка α_1 , рассчитанные этим методом и измеренные экспериментально, совпадают для большего числа изученных систем (~2/3 исследованных), однако близость их значений обнаруживается пока сравнительно редко. В связи с этим представляет большой интерес сопоставление рассчитанных и измеренных значений α_1 и энергии упорядочения на 1-й координационной сфере $V(R_1)$ для сплавов непереходных элементов, псевдопотенциалы которых наиболее надежны. В данной работе проведен расчет энергий упорядочения методом псевдопотенциала сплавов Mg—In и Mg—Cd и дано сопоставление с энергиями упорядочения, определенными из диффузного рассеяния рентгеновских лучей.

Расчет энергий упорядочения проводился согласно [10] по следующим формулам:

$$V(R_{i}) = \frac{\overline{\Omega}_{0}}{\pi^{2}} \int dq \cdot [q^{2} F(q) \frac{\sin(qR_{i})}{qR_{i}},$$

$$F(q) = \frac{\overline{\Omega}_{0}}{8\pi} |\Delta W^{0}(q)|^{2} q^{2} \frac{1-\varepsilon(q)}{\varepsilon^{*}(q)} + 2\pi \frac{Z_{A}^{*} - Z_{B}^{*}}{\overline{\Omega}_{0} q^{2}} e^{-q^{2}/4\eta},$$
(1)

где V(R) — зависимость энергии упорядочения от межатомного расстояния, $\overline{\Omega}_0$ — средний атомный объем сплава, $\Delta W^0(q)$ — разность формфакторов псевдопотенциалов компонент сплава, демпфированных множителем ехр (—0,03 $(q/2 k_F)^4$). В данной работе использовались формфакторы Анималу [12, 13], $\varepsilon(q)$ — статическая диэлектрическая проницаемость, $\varepsilon^*(q)$ — то же с учетом поправок на обмен и корреляцию, которые вводились по [14], q — волновой вектор, Z_A — Z_B — разность валентностей компонент сплава, η — параметр Эвальда. Все расчеты проводились на ЭВМ БЭСМ-4М по специально разработанным программам. Результаты расчетов и их обсуждение.

Система Mg—Cd. Расчет энергий упорядочения проводился в широкой области концентраций Cd: 10, 15, 20, 25, 50, 60, 75 ат. %. При этом использовались полученные из эксперимента значения межатомных расстояний. Вид функций V(R) приведен на рисунке, а в табл. 1 даны значения $V(R_1)$, рассчитанные для соответствующих указанным температурам межатомных расстояний. Из рисунка видно, что V(R) — осциллирующая функция, и это согласуется с представлением о характере зависимости энергии межатомного взаимодействия от межатомного расстояния. Приведенные в табл. 1 значения $V(R_1)$ показывают, что увеличение концентрации Cd приводит к сравнительно небольшому увеличению энергии упорядочения, обусловленному уменьшением межатомного расстояния. В соответствии с этим V(R) при повышении температуры уменьшается. Характер указанных закономерностей не зависит от использованных потенциалов: приведенные в табл. 1 значения $V'_{1 \text{ теор}}$ и $V''_{1 \text{ теор}}$ отвечают потенциалам кадмия Анималу, опубликованным в 1965 (V'') и 1966 (V') гг. Тем не менее обращает на себя внимание тот

факт, что использование уточненного потенциала уменьшает рассчитанные значения V_1 примерно в два раза. Это указывает на весьма большую чувствительность результатов расчета к точному виду потенциалов.

Сравним теперь рассчитанные значения с полученными из экспериментальных данных о параметрах ближнего порядка [15, 16] (см.

Зависимость энергии упорядочения от межатомного расстояния: 1 — Mg—10 ат. % Cd, -2 — Mg—10 ат. % In

табл. 1, последние 2 столбца). Значения $V'_{1\,\text{эксп}}$ рассчитаны из интенсивности диффузного рассеяния рентгеновских лучей в пренебрежении вкладами всех координационных сфер, кроме первой, а значения $V''_{1\,\text{әксп}}$ — с учетом всех измеренных параметров порядка, по которым находились значения энергий упорядочения для двух первых координационных сфер. Видно, что $V'_{1\,\text{теор}}$ и $V'_{1\,\text{эксп}}$ весьма близки при концентра-

Таблица 1

Концентрация Cd, ат. %	<i>t</i> , ℃	V' Teop	V" 2 теор	V' эксп	V"1 эксп
10 » 15 20 25 50 60 75	20 100 200 400 » 200 300 300 » 250 100	$1,58 \\ 1,55 \\ 1,54 \\ 1,51 \\ 1,54 \\ 1,61 \\ 1,61 \\ 1,61 \\ 1,70 \\ 1,74 \\ 1,82$	$\begin{array}{c} 3,18\\ 3,11\\ 3,00\\ 2,68\\ 2,91\\ 3,24\\ 3,17\\ 3,44\\ 3,60\\ 4,23\end{array}$	4,9 4,7 3,5 2,0 2,1 1,8 1,8 1,8 0,35	$ \begin{array}{c c} - \\ 7,4 \\ 4,6 \\ 2,8 \\ 2,4 \\ 2,4 \\ 2,6 \\ 0,4 \\ \end{array} $

Энергии упорядочения (в 10⁻² эВ) для сплавов Mg — Cd

циях Cd от 20 до 60 ат. %. При меньшем содержании Cd найденные из эксперимента значения больше рассчитанных, а при большей концентрации Cd — меньше. Отметим, что характер функций $V_{1\,9RCI}(C)$ почти не зависит от того, определяется ли V_1 только по α_1 или по всем экспериментальным значениям параметров α_i (последний столбец таблицы). Таким образом, проведенный расчет не позволяет объяснить обнаруженное экспериментально уменьшение V_1 при увеличении концентрации Cd. Отметим также, что если $V_{1\,9RCI}$ и $V_{1\,Teop}$ близки между собой по порядку величины, то измеренные н рассчитанные значения V_2 заметно меньше. (Рассчитанные значения V_2 имеют порядок $10^{-4}-10^{-5}$, а найденные из эксперимента — на порядок больше.) Система Mg—In. Для этой системы расчет V(R) проводился для сплавов с гексагональной (10, 13, 15 ат.% In) и кубической (27 ат.% In) структурой. Типичный вид V(R) приведен на рисунке. Отчетливо видно, что несмотря на существующую разность эффективных валентностей ($\Delta Z^* = 1,103$) V(R) осциллирует, как и для Mg—Cd, относительно оси абсцисс. Рассчитанные значения энергий упорядочения для межатомных расстояний, соответствующих 400°С, приведены в табл. 2. Видно, что увеличение концентрации In приводит к небольшому росту энергии упорядочения на первой координационной сфере в гексагональной фазе и ее уменьшению при переходе в кубическую фазу. Энергия упорядочения на второй координационной сфере оказалась не зависящей от состава в исследуемом интервале концентраций компонент.

Таблица 2

Концентрация In, ат. %	V _{1 теор}	^V 2 теор	V' 1 эксп	V" 1 эксп	V"2 эксп
10	6,5	1,0	7,6	16,5	5
13	6,6	1,0	8,1	14,5	6
15	6,8	1,0	8,9	15,5	5
27	6,3	1,0	1,7	1,5	3

Энергии упорядочения (в 10⁻² эВ) для сплавов Mg — In при 400°С

Сопоставим экспериментальные и расчетные значения V₁ и V₂. Видно, что величины V_{1 теор} и V'_{1 эксп} (при нахождении V'_{1эксп} использовались только измеренные значения а1) близки между собой в гексагональных сплавах и имеют одинаковую концентрационную зависимость; обе эти величины уменьшаются при переходе в кубическую фазу, хотя изменения экспериментальных значений V₁ при этом переходе на порядок больше, чем рассчитанных. Меньшее согласие обнаруживается между рассчитанными значениями V_{1 теор} и V_{2 теор} и найденными ИЗ эксперимента, когда V"1 экси и V"2 эксп определяются по всем найденным значениям α_i. По-видимому, немаловажный вклад в это расхождение вносит использование усредненных параметров α_{3,4} и α_{5,6} (вместо α₃, α₄, α_5, α_6) и пренебрежение значениями α для i > 6. Вполне возможно, что в подобных случаях более надежными будут значения $V(R_1)$, найденные по наиболее достоверному параметру а₁.

Выводы. Приведенные выше данные показывают, что для сплавов Mg--Cd и Mg-In метод псевдопотенциала позволяет получить близкие к экспериментальным значения энергий упорядочения на первой координационной сфере в достаточно широком интервале концентраций. Вместе с тем значительная часть экспериментальных данных остается необъясненной. Это означает, что теория ближнего порядка, базирующаяся на теории псевдопотенциала, нуждается в дальнейшем развитии.

СПИСОК ЛИТЕРАТУРЫ

[1] Hayes T. M., Brooks H., Bienenstock A. Ordering energy and effective pairwise interactions in a binary alloys of simple metals.—Phys. Rev., 1968, 175, p. 699—710. [2] Inglesfield J. E. Perturbation theory and alloying bahaviour. Formalism.—J. Phys. C, 1969, 2, p. 1285—1292; Perturbation theory and alloying behaviour. II. The mercury-magnesium system.—ibid., p. 1293—1298. [3] Kogachi M., Matsuo Y. Phase changes of the disordered In—Mg and Al—Mg alloys.—J. Phys. Chem. Sol., 1971, 32, p. 2393—2401. [4] Kogachi M. Ordering behaviours of the FCC and BCC phase alloys in the In—Mg, Li—Mg and Al—Zn systems.—J. Phys. Chem. Sol., 1973, 34, p. 67—75; Alloying behaviours of Ag—Mg,

46

Аи--Mg and Ag--Al alloys.— ibid., 1974, 35, р. 109—115. [5] Каtada К., Коgachi M., Matsuo Y. Ordering behaviour of Cd--Mg and Cd--Zn alloys with h. с. р. type structure.— J. Phys. Chem. Sol., 1973, 34, р. 1703—1711. [6] Силонов В. М., Хрущов М. М., Кациельсон А. А. Расчет энергий упорядочения и характеристических функций сплавов Ni-Pt и Co-Pt с помощью модельного потенциала. Физ. мет. и металловедение, 1976, 41, с. 698—701. [7] Фарид А. Хаваджа, Силонов В. М., Кациельсон А. А. Анализ ближнего порядка в сплавах V. Nb, Та на основе модельного потенциала. – Изв. вузов. Сер. Физика, 1976, № 1, с. 97—101, [8] Фарид А. Хаваджа, Силонов В. М., Ковальчук А. Локальный порядок в системе Ni-Ta.— Изв. вузов. Сер. Физика, 1976, № 1, с. 97—101, [9] Фарид А. Хаваджа, Силонов В. М., Ковальчук А. А. Локальный порядок в системе Ni-Ta.— Изв. вузов. Сер. Физика, 1976, 12, с. 21--25. [9] Багдасарян Р. И., Силонов В. М., Кациельсон А. А. Расчет ближнего порядка в Ag--Zn методом псевдопотенциалов.— Изв. АН Арм. ССР. Сер. Физика, 1976, 11, с. 407-409. [10] Farid А. Кhwaja. Silonov V. M., Katsnelson A. A., Khruschov M. M. A pseudopotential арргоаch to the electronic theory of short range order.— Phys. Stat. Sol.(b), 1977, 82, р. 701-704. [11] Кациельсон А. А., Силонов В. М., Фарид А. Хаваджа и др. Псевдопотенциальная теория атомного ближнего порядка и ее сравнение с экспериментом.— В кн.: Сб. тр. V Всес. сов. по упорядочению атомов и его влиянию на физич. свойства сплавов. Томск, 1979, с. 5—11. [12]. Апітаlu А. О. Е., Неіпе V. The screened model potential for 25 elements.— Phil. Mag., 1965, 12, р. 1249—1270. [13] Апітаlu А. О. Е. The to-14 electronic band structure energy for 29 elements.— Proc. Roy. Soc., 1966, 294, р. 376—392. [14] Sham L. J. A calculation of the phonon irequencies in sodium.— Proc. Roy. Soc., 1965, 283, р. 33—49. [15] Кациельсон А. А., Сафронова Л. А., Свешиников С. В. Концентрационная и температурная зависимости сливного порядка в гексагональных сплавах.— Физ. мет. и металловедение, 1977, 43, с. 7

Поступила в редакцию. 05.07.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22, № 4

УДК 537.635:537.611.45

ОСОБЕННОСТИ АНТИФЕРРОМАГНИТНОГО РЕЗОНАНСА В MnCl₂

М. О. Кострюкова, А. В. Ионов

(кафедра физики низких температур)

MnCl₂ — антиферромагнетик, относящийся к слоистым галогенидам группы железа. MnCl₂ обладает ромбоэдрической кристаллической структурой типа CdCl₂; слои металлических ионов чередуются с двумя слоями галоидов, перпендикулярно слоям направлена главная ось *с*₃, а в плоскости слоя лежат три бинарные оси.

Магнитные свойства слоистых галогенидов впервые рассмотрел Ландау [1], предположив, что между ионами металла в слое существует сильная ферромагнитная связь и спины направлены параллельно друг другу, а между слоями имеет место антиферромагнитное взаимодействие и спины в соседних слоях антипараллельны.

Температура перехода MnCl₂ из парамагнитного состояния в антиферромагнитное равна $T_N = 1,96$ К [2]. Было обнаружено, что магнитная теплоемкость, обусловленная наличием ближнего порядка, составляет заметную величину при температурах выше T_N . Спиновая энтропия, связанная с переходом MnCl₂ в разупорядоченное состояние, достигает при $T_N = 1,96$ К только 70% от ее максимальной величины.

Небольшой дополнительный максимум на кривой теплоемкости при T = 1,81 К был обнаружен в работе [3]. В работах [4, 5] исследовалась зависимость теплоемкости MnCl₂ от величины магнитного поля. На