1 Mangetic susceptibility.— Phys. Rev., 1955, 100, р. 1067—1070. [8] Yoshimori A. Theory of antiferromagnetic spin waves in some metamagnetic crystals.— Phys. Rev.. 1963, 130, р. 1312—1317. [9] Боровик-Романов А. С. Изучение слабого ферромагнетизма на монокристалле MnCO₃.— ЖЭТФ, 1959, 36, с. 766—780. [10] Кострюкова М. О. Скворцова И. Л. Электронный резонанс в антяферромагнитном NiCl₂.— ЖЭТФ, 1964, 47, с. 2069—2072. [11] Кострюкова М. О., Каширская Л. М. Антиферромагнитный резонанс в NiCl₂.— Письма в ЖЭТФ, 1969, 9, с. 400—404. [12] Туров Е. А. Физические свойства магнитоупорядоченных кристаллов. М.: Изд. АН СССР, 1963, с. 67—78. [13] Петров С. В., Попов М. А., Прозорова Л. А. Изучение спектра антиферромагнитного резонанса в BaAnf₄.— ЖЭТФ, 1972, 62, с. 1884—1888. [14] Прозорова Л. А. Антиферромагнитный резонанс в MnCO₃ и исследование антиферромагнитного упорядоченных кристалкуЭТФ, 1972, 65, с. 1085—1091. [16] Боровик-Романов А. С., Рудашевский Е. Г. О. влиянии спонтанной стрикции на антиферромагнитный резонанс в гематите.— ЖЭТФ, 1964, 47, с. 2095—2101. [17] Туров Е. А., Шавров В. Г. Об энергетической щели для спиновых волн в ферро- и антиферромагнитный резонансь гематите.— ЖЭТФ, 1964, 47, с. 2095—2101. [17] Туров Е. А., Шавров В. Г. Об энергетической щели для спиновых волн в ферро- и антиферромагнитный слазанной с магнитоупругой энергией.— ЖЭТФ, 1965, 7, с. 217—226. [18] Думеш Б. С., Егоров В. М., Мешеряков В. Ф. Исследование влияния примесей Мп²+ и Fe²+ на спектр антиферромагнитного резонанса в СоСО₃.— ЖЭТФ, 1971, 61, с. 320—331. [19] Сонин Э. Б. Влияние примесей на дальний порядок и низкочастотную ветвь спектра магнонов в легкоплоскостных антиферромагниты. В кн.: Мат. 20-го Весс. сов. по фнз. низ. температур, ч. II, 1979, с. 33—34. [20] Гикиуата Н. Lee P. А. Dynamics of the charge-density wave. Impurity pinning in a single chain.— Phys.

Поступила в редакцию 06.07.79

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22-№ 4

УДК 621.373.7

ПЯТИВОЛНОВАЯ МОДЕЛЬ КОГЕРЕНТНОГО РАМАНОВСКОГО -Смешения

Ю. Е. Дьяков, В. А. Нехаенко, С. Ю. Никитин

(кафедра общей физики и волновых процессов)

Введение. В работах [1, 3], посвященных теории когерентного рамановского смешения (КРС), исследована четырехволновая модель взаимодействия, предполагающая, что сигнал пробного излучения рассеивается на колебаниях среды только в стоксову

 $\omega_{\mathtt{NK}} = \omega_{\mathtt{n}} - \omega_{\mathtt{0}}$

·(1)

(2)

или только в антистоксову

$\omega_a = \omega_a + \omega_0$

область. В средах с сильной дисперсией, например в кальците [1], такое рассмотрение оправдано, поскольку условия синхронизма для (1) и (2) являются взаимоисключающими. Однако рядом преимуществ обладает использование для КРС сред с относительно слабой дисперсией, в частности сжатого водорода. Это дает возможность получить высокую эффективность преобразования частоты [3], а также широкую область перестройки генерируемого излучения в схеме коллинеарного взаимодействия [2]. Экспериментальные наблюдения [3] и оценки [4] показывают, что при этом возможны одновременно оба процесса (1), (2), что, по нашему мнению, приводит к необходимости рассмотрения пятиволновой модели явления с участием полей на частотах $\omega_{\rm H}$, $\omega_{\rm c}$, $\omega_{\rm n}$, $\omega_{\rm wk}$, $\omega_{\rm a}$ (рис. 1). Пятиволновая модель, в частности, необходима для интерпретации результатов эксперимента [2] по генерации перестраиваемого ИК-излучения, в котором из-за перекачки энергии пробной волны в

Рис. 1.	Частоты взаимодействующих полей: накач-	,	. ,
ки (ω _в)	, стоксовой компоненты (wc), пробной вол-	Wor Wo.	We in
ны (ωπ)), ИК (ω_{RR}) и антистоксовой (ω_a) компо-	<u></u> K<>K<>I	
нент	г, ω _о — частота молекулярных колебаний	$D \omega_{\rm MK} \omega_{\rm m} \omega_{\rm B}$	$\omega_c \omega_{\kappa}$

антистоксову компоненту, по-видимому, существенно снижается эффективность генерации ИК-излучения. По нашим оценкам, в условиях экспериментов [2, 5, 6] антистоксов сигнал должен быть значительно мощнее стоксова. В связи с этим можно предложить наблюдение сигнала на антистоксовой частоте для идентификации процесса КРС.

Основные уравнения. Полная система уравнений, описывающая коллинеарное взаимодействие волн ω_н, ω_c, ω_n, ω_{ик}, ω_a, имеет вид:

$$\begin{cases} \frac{\partial A_{\rm H}}{\partial z} = -\frac{1}{2} g_{\rm H} (|A_{\rm c}|^2 A_{\rm H} + A_{\rm c} A_{\rm n} A_{\rm HR}^* e^{i\Delta_1 z} - A_{\rm c} A_{\rm n}^{\dagger} A_{\rm a} e^{i\Delta_2 z}), \\ \left(\frac{\partial A_{\rm c}}{\partial z} = \frac{1}{2} g_{\rm c} (|A_{\rm H}|^2 A_{\rm c} + A_{\rm H} A_{\rm n}^* A_{\rm HR} e^{-i\Delta_1 z} - A_{\rm H} A_{\rm n} A_{\rm a}^* e^{-i\Delta_2 z}), \end{cases}$$
(3)
$$\frac{\partial A_{\rm n}}{\partial z} = -\frac{1}{2} g_{\rm n} (|A_{\rm HK}|^2 A_{\rm n} - |A_{\rm a}|^2 A_{\rm n} + A_{\rm HK} A_{\rm h} A_{\rm c}^* e^{-i\Delta_1 z} + A_{\rm a} A_{\rm H}^* A_{\rm c} e^{i\Lambda_2 z}), \\ \frac{\partial A_{\rm nK}}{\partial z} = -\frac{1}{2} g_{\rm nK} (|A_{\rm n}|^2 A_{\rm HK})^2 - A_{\rm n}^2 A_{\rm a}^* e^{-i\Delta_3 z} + A_{\rm n} A_{\rm H}^* A_{\rm c} e^{i\Delta_1 z}), \\ \frac{\partial A_{\rm nK}}{\partial z} = \frac{1}{2} g_{\rm nK} (|A_{\rm n}|^2 A_{\rm HK})^2 - A_{\rm n}^2 A_{\rm a}^* e^{-i\Delta_3 z} + A_{\rm n} A_{\rm H}^* A_{\rm c} e^{i\Delta_1 z}), \\ \frac{\partial A_{\rm a}}{\partial z} = \frac{1}{2} g_{\rm a} (-|A_{\rm n}|^2 A_{\rm a} + A_{\rm n}^2 A_{\rm HK}^* e^{-i\Delta_3 z} + A_{\rm n} A_{\rm H} A_{\rm c}^* e^{-i\Delta_2 z}), \\ A_i (z = 0) = A_{i0} (j = {\rm H}, {\rm C}, {\rm n}, {\rm MK}, {\rm a}), \end{cases}$$

где A_j — комплексные амплитуды; $g_j = g_c \omega_j / \omega_c$, g_c — параметр усиления при ВКР накачки $\omega_{\mu} \rightarrow \omega_c$, $\Delta_1 = (k_{\mu} - k_c) - (k_{\pi} - k_{\pi\kappa})$, $\Delta_2 = (k_{\mu} - k_c) - (k_a - k_{\pi})$, $\Delta_3 = \Delta_2 - \Delta_4$ — волновые расстройки. Система уравнений (3-4) удовлетворяет двум парциальным законам сохранения энергии:

$$\frac{I_{\rm H}(z)}{\omega_{\rm H}} + \frac{I_{\rm c}(z)}{\omega_{\rm c}} = {\rm const}, \quad \frac{I_{\rm m}(z)}{\omega_{\rm m}} + \frac{I_{\rm HK}(z)}{\omega_{\rm BK}} + \frac{I_{\rm a}(z)}{\omega_{\rm a}} = {\rm const}, \quad (5)$$

где $I_j = |A_j|^2$ — интенсивности на частотах ω_j . Допустим, что интенсивность накачки значительно превышает интенсивность пробного излучения

$$I_{\rm HO} \gg I_{\rm IIO}. \tag{6}$$

• В этом случае молекулярные колебания среды формируются в основном за счет пары сильных волн

$$Q(z) \simeq A_{\rm H}(z) A^*_{\rm c}(z),$$

а влиянием на Q(z) полей с частотами ω_{n} , ω_{n} , ω_{a} можно пренебречь. Математически это значит, что в уравнениях (3)—(4) можно опустить

53

члены, которые не содержат произведения амплитуд сильных волн (параметрические в (3) и комбинационные в (4)). При этом система (3) становится замкнутой; ее решение известно [7]. В частности, для нормированной амплитуды колебаний получаем:

$$Q(z) = 2Q_0 - \frac{\sqrt{\alpha} \exp \Gamma z (1 + \alpha)}{1 + \alpha \exp 2\Gamma_1 z (1 + \alpha)} e^{i\varphi},$$
(7)

где $Q_0 = (1/2) (1 + \alpha) I_{\mu o} \sqrt{\omega_c/\omega_{\mu}}$ — максимальная амплитуда, $\Gamma = (1/2) g_c I_{\mu o}, \alpha = I_{co}\omega_{\mu}/I_{\mu o}\omega_c, \varphi = \varphi_{\mu} - \varphi_c - разность фаз волн <math>\omega_{\mu}, \omega_c$. Уравнения (4) становятся линейными и зависят от Q(z) как от параметра:

$$\frac{\partial A_{\mathbf{n}}}{\partial z} = -\frac{1}{2} g_{\mathbf{n}} [A_{\mathbf{n}\mathbf{k}}Q(z) e^{-i\Delta_{1}z} + A_{\mathbf{a}}Q^{*}(z) e^{i\Delta_{2}z}],$$

$$\frac{\partial A_{\mathbf{n}\mathbf{k}}}{\partial z} = \frac{1}{2} g_{\mathbf{n}\mathbf{k}} A_{\mathbf{n}}Q^{*}(z) e^{i\Delta_{1}z}, \quad \frac{\partial A_{\mathbf{a}}}{\partial z} = \frac{1}{2} g_{\mathbf{a}} A_{\mathbf{n}}Q(z) e^{-i\Delta_{2}z}.$$
(8)

В дальнейшем условие (6) считается всегда выполненным.

Расчет КПД генерации. Поскольку общее решение уравнений (8) получить не удается *, был проведен численный анализ. Уравнения для

0,55 0,75 0,86 0,94 0,99 1,01 1,04

расстройки Рис. 2. Волновые $\Delta_1 = (k_{\rm H} - k_{\rm c}) - (k_{\rm H} - k_{\rm HK}), \quad \Delta_2 =$ $=(k_{\pi}-k_{c})-(k_{a}-k_{\pi})$ (H₂, P==20 атм) — а. КПД генерации ИК-излучения: 1 -- пятиволновая модель с учетом дисперсии (14), модель 2 — пятиволновая без учета дисперсии (16), 3-четырехволновая модель [3]. Кружками показано численное рещение уравнений (8) - б. КПД генерации антистоксова излучения — в

действительных амплитуд и фаз, вытекающие из (8), с граничными условиями $A_{\rm ик}(z=0) = A_a(z=0) = 0$, $A_{\rm m}(z=0) = A_{\rm mo}$ решались численно для условий эксперимента [2] по генерации перестраиваемого ИК-излучения в водороде: длина волны накачки 1,06 мкм, частота молекулярных колебаний $v_0 = 4155$ см⁻¹, инкремент усиления при ВКР $\Gamma = -0.8$ см⁻¹, давление газа 20 атм.

1,06 2a, MKM

^{*} Приближенное решение получено для сред с не слишком сильной дисперсией — см. (11') и (15).

Мы представили $n(\omega)$ в виде $n(\omega) = n_0 + n_1 \omega^2 (n_0, n_1 - \text{постоянные})$, что дает точность ~95% при $\lambda_{uk} > 1$ мкм. При этом $\Delta_1 = bv_0 v_H v_c (1 - v_{uk} v_u / v_{Hv_c}), \Delta_2 = bv_0 v_H v_c (1 - v_a v_u / v_H v_c)$, где $v_i = \omega_i / 2\pi c$ - частоты в обратных сантиметрах, $b = P \cdot 20, 5 \cdot 10^{-14} \text{ см}^2$, P - давление в атмосферах. Значение константы b определено по данным работы [2]. Зависимость волновых расстроск от λ_{uk} показана на рисунке 2, a.

Как видно из (7) и (8), взаимодействие волн возможно лишь в области возбуждения молекулярных колебаний среды. В связи с этим длина области интегрирования z_m выбиралась из условия $V \overline{\alpha} e^{\Gamma(1+\alpha)z_m} = -10^4$. За пределами этой области колебания практически отсутствуют и взаимодействие волн прекращается. q/q_0

Для экономии машинного времени параметр α полагали равным 10⁻³.

Рис. 3. Точное Q и приближенное Q_п пространственные распределения молекулярных колебаний среды

В результате решения получен квантовый КПД преобразования частоты в стоксову $\eta_{\rm MK} = I_{\rm MK}(z_m)\omega_{\rm m}/I_{\rm no}\omega_{\rm MK}$ и антистоксову $\eta_a = I_a(z_m)\omega_{\rm m}/I_{\rm no}\omega_a$ область в зависимости от длины волны ИК-излучения в диапазоне 1 мкм $<\lambda_{\rm MK} < 10$ мкм. Программа обеспечивает абсолютную точность вычисления этих величин порядка 10⁻⁵. Точность счета контролировалась по соотношению (5), вытекающему из (8). Результаты представлены (кружками) на рис. 2 (6, в). Для сравнения на рис. 2, б пунктиром показан КПД, вычисленный по формуле

$$\eta_{\rm EK} = \sin^2\left(\frac{\pi}{2}\sqrt{\frac{\omega_{\rm EK}\,\omega_{\rm II}}{[\omega_{\rm H}\,\omega_{\rm C}}}\right)$$

четырехволновой модели [3], т. е. без учета антистоксовой компоненты. Резкое отличие этой кривой от результатов пятиволновой модели обусловлено сильной перекачкой энергии в антистоксову волну.

Для приближенного аналитического решения задачи (8) можно заменить колоколообразное пространственное распределение (7) прямоугольным распределением (рис. 3):

$$Q_{n}(z) = \begin{cases} 0, & z_{1} < z_{0} - L_{0}/2\beta_{0}, \ z > z_{0} + L_{0}/2\beta_{0}, \\ \beta_{0}Q_{0}, & z_{0} - L_{0}/2\beta_{0} \ll z \ll z_{0} + L_{0}/2\beta_{0}, \end{cases}$$
(9)

где z_0 определяется формулой $\sqrt[]{\alpha}$ ехр $\Gamma z_0 (1+\alpha) = 1$; L_0 , β_0 — параметры, определяемые из условий равенства площадей и минимума среднеквадратичного отклонения точного и приближенного распределений

$$L_0 = Q_0^{-1} \int_0^\infty |Q(z)| dz \simeq \pi/\Gamma, \quad \frac{\partial}{\partial \beta_0} \int_0^\infty (|Q| - Q_n)^2 dz = 0.$$
 (10)

Последнее условие приводит к трансцендентному уравнению относительно β_0 , решёние которого (при $\alpha \ll 1$) дает $\beta_0 == 0,79$. В области $z_0 - L_0/2\beta_0 \ll z \ll z_0 + L_0/2\beta_0$ система (8) преобразуется к виду:

$$\frac{\partial C}{\partial \zeta} = -(h_1 A + h_2 B), \quad \frac{\partial A}{\partial \zeta} + i\delta_1 A = C, \quad \frac{\partial B}{\partial \zeta} - i\delta_2 B = C,$$
(11)

(11) 55

$$C(\zeta = 0) = 1, A(\zeta = 0) = 0, B(\zeta = 0) = 0,$$

где

$$C = A_{n}/A_{n0}; \ A = (A_{\text{HK}} \omega_{n}/A_{n0} \omega_{\text{HK}}) \exp[i(\varphi - \delta_{1}\zeta)];$$

$$B = (A_{a} \omega_{n}/A_{n0} \omega_{a}) \exp \left[-i (\varphi - \delta_{2}\zeta)\right]; \quad \zeta = (\gamma \Gamma \beta_{0}/2 \bigvee 2) (z - z_{0} + L_{0}/2\beta_{0});$$

$$\delta_{1,2} = (2 \sqrt{2}/\gamma \Gamma \beta_{0}) \Delta_{1,2}; \quad \gamma = (2\omega_{n}^{2}/\omega_{n} \omega_{c})^{1/2};$$

$$h_{1} = \omega_{n}/\omega_{n}; \quad h_{2} = \omega_{a}/\omega_{n}.$$

$$n_1 = \omega_{gK}/\omega_n; n_2 = \omega_a/2$$

Решая (11), находим:

$$A = \sum_{k=1}^{\frac{1}{3}} \frac{c_k c^{i\gamma_k \xi_1}}{i(\gamma_k + \delta_1)}, \ B = \sum_{\frac{1}{k=1}}^{3} \frac{c_k e^{i\gamma_k \xi_1}}{i(\gamma_k - \delta_2)}, \ C = \sum_{k=1}^{3} c_k e^{i\gamma_k \xi_1}, \quad (11')$$

где $c_k = D_k/D$, $D = D_1 + D_2 + D_3$, D = I(0, -k) (0, -k) e \1

$$D_{1} = [(\gamma_{2} + \delta_{1}) (\gamma_{3} - \delta_{2})]^{-1} - [(\gamma_{3} + \delta_{1}) (\gamma_{2} - \delta_{2})]^{-1},$$

$$D_{2} = [(\gamma_{3} + \delta_{1}) (\gamma_{1} - \delta_{2})]^{-1} - [(\gamma_{1} + \delta_{1}) (\gamma_{3} - \delta_{2})]^{-1};$$

$$D_{3} = [(\gamma_{1} + \delta_{1}) (\gamma_{2} - \delta_{2})]^{-1} - [(\gamma_{2} + \delta_{1}) (\gamma_{1} - \delta_{2})]^{-1},$$

ү_{1,2,3} — корни кубического уравнения

$$\gamma^{3} + \gamma^{2} (\delta_{1} - \delta_{2}) - \gamma (h_{1} + h_{2} + \delta_{1} \delta_{2}) - (\delta_{1} h_{2} - \delta_{2} h_{1}) = 0, \quad (12)$$

т. е. [8]:

$$\begin{cases} \gamma_{1} = -2r\cos{(\psi/3)} - (\delta_{1} - \delta_{2})/3, \\ \gamma_{2} = 2r\cos{(\pi/3 - \psi/3)} - (\delta_{1} - \delta_{2})/3, \\ \gamma_{3} = 2r\cos{(\pi/3 + \psi/3)} - (\delta_{1} - \delta_{2})/3, \end{cases}$$
(13)

где $\psi = \arccos \left[\frac{b^3}{27a^3 - bc} - \frac{bc}{6a^2} + \frac{d}{2a} \right] r^3$,

$$r = \sqrt{(b^2 - 3ac)/9a^2}, \ a = 1, \ b = \delta_1 - \delta_2,$$

$$c = -(h_1 + h_2 + \delta_1\delta_2), \ d = (\delta_2 h_1 - \delta_1 h_2).$$

Величина ζ меняется в пределах

$$0 \ll \zeta \ll \zeta_m = (\gamma \Gamma/2 \sqrt{2}) L_0 = (\omega_n^2 / \omega_{\rm H} \omega_{\rm c})^{1/2} \pi/2.$$

Нормированные выходные интенсивности волн (или эффективности преобразования по квантам) $\eta_j = I_j(\zeta_m) \omega_n / I_{n0} \omega_j$ $(j = \pi, \ ик, \ a)$ определяются формулами:

$$\eta_{n} = \sum_{k=1}^{3} c_{k}^{2} + 2 (c_{1}c_{2}C_{12} + c_{1}c_{3}C_{13} + c_{2}c_{3}C_{23}),$$

$$\eta_{2k} = \sum_{k=1}^{3} d_{k}^{2} + 2 (d_{1}d_{2}C_{12} + d_{1}d_{3}C_{13} + d_{2}d_{3}C_{23}),$$

$$\eta_{a} = \sum_{k=1}^{3} e_{k}^{2} + 2 (e_{1}e_{2}C_{12} + e_{1}e_{3}C_{13} + e_{2}e_{3}C_{23}),$$

$$C_{kl} = \cos (\gamma_{k} - \gamma_{l}) \zeta_{m}, \ d_{k}^{\prime} = \sqrt{h_{1}} c_{k}/(\gamma_{k} + \delta_{1}),$$

$$e_{k} = \sqrt{h_{2}} c_{k}/(\gamma_{k} - \delta_{2}).$$
(14)

где

В произвольном сечении ζ переменные составляющие интенсивностей компенсируют друг друга ($c_1c_2+d_1d_2+e_1e_2=c_1c_3+d_1d_3+e_1e_3=c_2c_3+d_2d_3+e_2e_3=0$), так, что суммарный поток мощности сохраняется: $\eta_{\rm H} + \eta_{\rm HK} + \eta_{\rm a} = 1$. Перестроечные кривые, построенные по формулам (14), представлены сплошными линиями на рис. 2, *б*, *в*. Видно хорошее соответствие этих кривых и точек, полученных численным решением системы (8) *.

Обсуждение результатов. Анализ результатов показывает, что перекачка энергии в антистоксову компоненту может существенно сни-

Рис. 4. КПД генерации ИК-излучения. Сплошные кривые построены с учетом дисперсии (14), штрихпунктирная кривая — без учета дисперсии (16). *a*: 1 — $\Gamma = 1,6$ см⁻¹, 2 — $\Gamma = 0,8$ см⁻¹, 3 — $\Gamma = 0,4$ см⁻¹. Численное решение уравнений (8): $\Gamma = 1,6$ (•); 0,8 (O) и 0,4 (\triangle) см⁻¹. $\delta - \Gamma = 0,2$ см⁻¹; O — численное решение (8)

жать КПД генерации ИК-излучения (рис. 2, б), поэтому для количественных оценок необходимо использовать пятиволновую модель КРС. Полученные формулы позволяют вычислять эффективность преобразования частоты с учетом дисперсии среды. При этом можно выделить два характерных случая.

1. Среда без дисперсии. Если $\Delta_{1,2} \ll \Gamma$, то осуществляется когерентное взаимодействие волн, и КПД генерации приближается к предельному уровню η^0 , соответствующему процессу в среде без дисперсии. Эта величина легко оценивается. При $\Delta_1 = \Delta_2 = 0$ общее решение (8) имеет вид:

$$\begin{cases} A_{n} = A_{n0} (C_{1} \cos \gamma p + C_{2} \sin \gamma p), \\ A_{\mu\kappa} = A_{n0} h_{1} \left[C_{0} - \frac{1}{\sqrt{2}} (C_{2} \cos \gamma p - C_{1} \sin \gamma p) \right] e^{-i\varphi}, \\ A_{a} = A_{n0} h_{2} \left[-\frac{C_{0}}{h} - \frac{1}{\sqrt{2}} (C_{2} \cos \gamma p - C_{1} \sin \gamma p) \right] e^{i\varphi}, \end{cases}$$
(15)

где

$$p = p(z) = \frac{1}{2} g_c \sqrt{\omega_{\mu}/\omega_c} \int_0^z |Q(z)| dz = \arg \left[\sqrt{\alpha} \exp \Gamma(1+\alpha)z\right] - -\arg \sqrt{\alpha} \leqslant \pi/2, \quad h = h_2/h_1,$$

постоянные C_0 , C_1 , C_2 определяются граничными условиями. При $A_{u\kappa}(z=0) = A_a(z=0) = 0$, $A_{u}(z=0) = A_{u0}$ получаем $C_1 = 1$, $C_0 = C_2 = 0$, откуда

$${}^{0}_{\text{MK}} = (\omega_{\text{MK}}/2\omega_{\text{m}})\sin^{2}\gamma\rho, \ \eta_{a}{}^{0} = (\omega_{a}/2\omega_{\text{m}})\sin^{2}\gamma\rho.$$
(16)

* Расчеты, проведенные для 0,5≤\$β₀\$1 и 0,08 см⁻¹\$Г\$8 см⁻¹ показывают, что вытекающее из (10) значение β₀=0,79 дает наилучшее приближение. Зависимость $\eta^{0}_{nk}(\lambda_{nk})$ при $p = \pi/2$ показана штрихпунктиром на рис. 2, б, 4, а. Видно, что в условиях [2] бездисперсионное приближение можно использовать уже при $\Delta_{1,2}/\Gamma \leq 0.5$. По-видимому, дисперсией можно пренебречь и в условиях [5, 6], где, по нашим оценкам, $\Delta_{1} \simeq \Delta_{2} \simeq 20.06$ см⁻¹ $\ll \Gamma$.

2. Среда с дисперсией. Если $\Delta_{4,2} \simeq \Gamma$, то, как видно из рис. 2, б, 4, *a*, влияние дисперсии весьма существенно, и КПД заметно ниже уровня η^0 . В этом случае КПД с хорошей точностью оценивается по формулам (14). При $\Delta_{1,2} \gg \Gamma$ (рис. 4, б) взаимодействие некогерентно и эффсктивность преобразования частоты чрезвычайно мала. В этом случае аппроксимация (9) не дает хорошей точности, и формулы (14) лишь качественно передают ход перестроечной кривой.

Многомодовая накачка. Полученные здесь результаты можно обобщить на случай многомодовой накачки [4], удовлетворяющей условию $\Omega T_2 \gg 1$, где Ω — межмодовая частота, T_2 — поперечное время релаксации. Используя результаты [9], можно показать, что молекулярные колебания в этом случае близки к монохроматическим, а выражение для Q(z) имеет структуру, подобную (7).

СПИСОК ЛИТЕРАТУРЫ

[1] Giordmaine J. A., Kaiser W. Light scattering by coherently driven lattice vibrations.— Phys. Rev., 1966, 144, р. 676—688. [2] Brosnan S. J., Fleming R. N., Herbst R. L., Byer R. L. Tunable infrared generation by coherent Raman mixing in H₂.— Appl. Phys. Lett. 1977, 30, р. 330—332. [3] Венкин Г. В., Крочик Г. М., Кулюк Л. Л., Малеев Д. И., Хронопуло Ю. Г. Влияние четырехволновых параметрических процессов на динамику стоксовых компонент BKP.— ЖЭТФ, 1976, 70, с. 1674—1685. [4] Бондаренко С. И., Дьяков Ю. Е., нехаенко В. А., Никатин С. Ю. К теории генерации ИК-взлучения при четырехволновом процессе на основе неколлинеарного ВКР и в резонаторе.— В кн.: Тезисы докл. IX Всес. конф. по когерентной и нелинейной оптике. М., 1978, ч. II, с. 117. [5] Loy M. M. T., Sorokin P. P., Lankard J. R. Generation of 16-µm radiation by four-wave mixing in parabydrogen.— Appl. Phys. Lett.. 1977, 30, р. 415—417. [6] Sorokin P. P., Loy M. M. T., Lankard J. R. A 16-µm radiation source utilizing four-wave mixing in cooled parahydrogen gas.— IEEE J. of Quant. Electron., 1977, OE-13, p. 871—875. [7] Ахманов С. А., Хохлов Р. В. Проблемы нелинейной оптики. М.: Изд-во АН СССР, 1965, с. 231. [8] Бронштейн И. Н., Семендяев К. А. Справочник по математике. М.: Наука, 1967. [9] Джотян Г. П., Дьяков Ю. Е. Насыщение ВКР при многомодовой накачке.— Вестн. Моск. ун-та. Сер. Физ., Астрон., 1977, 18, с. 70—73.

Поступила в редакцию 09.07.79

УДК 534.013:53.082.72

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ КРУЧЕНИЯ ЦИЛИНДРОВ. ИЗ САПФИРА

В. П. Митрофанов, О. И. Пономарева

(кафедра физики колебаний)

Эксперименты по обнаружению гравитационных воли потребовали разработки высокодобротных механических резонаторов продольных колебаний из монокристаллов сапфира. Эти резонаторы имеют рекордные гначения добротности $Q=2\cdot10^8$ при T=300 К и $Q=5\cdot10^9$ при T=4,2 К [1]. Однако для проведения экспериментов по обнаружению пост-ньютоновских гравитационных эффектов необходимо иметь резонаторы крутильных колебаний с предельно высокой добротностью [2].