[1] Баранова Е. Г. Изучение ассоциации родамина 6Ж в этаноловых и глицериновых растворах.— Опт. и спектроскопия, 1962, 13, вып. 6, с. 801—808. [2] Левшин Л. В., Бехли Е. Ю., Славнова Т. Д., Южаков В. И. Природа концентрационного тушения люминесценции спиртовых растворов родаминовых красителей.— Опт. и спектроскопия, 1974, 36, вып. 3, с. 503—508. [3] Левшин Л. В., Славнова Т. Д., Южаков В. И. Спектральные свойства ассоциированных молекул родаминовых красителей в спиртовых растворах при различных температурах.— В кн.: Матер. 10 Всес. сов. по физике жидкостей. Самарканд, 1974, с. 122—128. [4] Selvin J. E., Steinfeld J. I. Aggregation equillbria of Xanthene Dyes.— J. Phys. Chem., 1972, 76, р. 762—777. [5] Левшин Л. В., Рева М. Г., Рыжиков Б. Д., Стальмахович С. И. Влияние примесей воды на ассоциацию молекул родамина 6Ж в этиловом спирте.— Вестн. Моск. ун-та. Сер. Физ. Астрон., 1981, 22, № 4, с. 71—74. [6] Тіпосо І. Нуросhromism in polynucleotides.— J. Amer. Chem. Soc. 1960, 82, р. 4785—4790. [7] Rhodes W. Нуросhromism and other spectral properties of helical polynicleotides.— J. Amer. Chem. Soc., 1961, 83, р. 3609—3617. [8] Левшин-Л. В., Рева М. Г., Рыжиков Б. Д. Влияние межмолекулярных взаимодействий на электронные спектры родамина 6Ж.— Журн. прикл. спектроск., 1977, 36, вып. 1, с. 66—70. [9] Сенаторова Н. Р., Левшин Л. В., Рыжи ков Б. Д. Концентрационное тушение люминесценции в условиях неоднородного уширения электронных спектров молекул растворенного вещества.— Журн. прикл. спектроскопии, 1979, 30, вып. 4, с. 658—661.

Поступила в редакцию 29.05.80

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22, № 4

УДК 538.245:538.56

НЕОДНОРОДНЫЕ КОЛЕБАНИЯ ГРАНИЦ ДОМЕНОВ В МОНОКРИСТАЛЛИЧЕСКИХ ОБРАЗЦАХ ФЕРРИТОВ

С. А. Киров

(кафедра физики твердого тела)

Нахождение спектра магнитных возбуждений ферромагнитного образца даже с простейшей периодической пластинчатой ломенной структурой встречает большие трудности, связанные с учетом энергии диполь-дипольного взаимодействия. Это заставляет прибегать к упрощающим приближениям, оправданным в некоторых интервалах соотношений толщины доменной границы 8, ширины домена d, размера образца L и пространственного периода колебаний λ . Важным случаем, допускающим простое решение, являются длинноволновые колебания $L \sim \lambda \gg d$, аналогичные уокеровским модам в области насыщения [1]. В отличие от коротких спиновых волн, рассматривавшихся в большинстве работ ($\lambda \ll d$ [2-4], $\lambda \ll L$ [5, 6]), для данных колебаний существенны граничные условия на поверхности образца, а собственной структурой доменной границы при $\lambda \gg d \gg \delta$ можно пренебречь, аппроксимируя ее мембраной с поверхностной массой µ [7] и энергией W [8]. В приближении неподвижных границ, т. е. для частот, много больших их собственных резонансных частот, расчет спектра длинноволновых «прецессионных» колебаний был дан в работах [9, 10] и получил полное экспериментальное подтверждение [11, 10]. В настоящей работе рассматривается низкочастотная, «трансляционная» часть спектра, обусловленная коллективным колебаниям праниц доменов, без учета процессии наматниченности внутри доменов.

Рассмотрим образец монокристалла ферродиэлектрика с пластинчатой доменной структурой с периодом 2d и векторами намагниченности $|\mathbf{M}_1| = |\mathbf{M}_2| = M_0$, образующими равные углы с нормалью к границам — осью z (рис. 1). Структуры такого типа реализуются как в одноосных, так и кубических ферритах [12]. Выберем декартовы оси $\mathbf{x} \| \mathbf{M}_1 - \mathbf{M}_2$, $\mathbf{y} = \mathbf{z} \times \mathbf{x}$. Введем малые переменные — поле $\mathbf{h}(\mathbf{r})$ и намагниченность $\mathbf{m}(\mathbf{r}) = \mathbf{x}m(\mathbf{r})$, усредненные по доменам в окрестности Δr , удовлетворяющей условию $\lambda \gg \Delta r \gg d$. Поле $\mathbf{h}(\mathbf{r})$, почти однородное на ширине домена ($\lambda \gg d$), может локально возбудить только «оптическую» моду с противофазными смещениями соседних границ. Пусть $f(\mathbf{r})$ описывает среднее смещение границ в окрестности r. Тогда $m(\mathbf{r}) = (4M_x/d)f(r)$, где $M_x = \mathbf{x}\mathbf{M}_1$, а уравнение поверхности j-й границы с равновесной координатой z_{0j} имеет вид $z_j(x, y) = z_{0j} + (-1)^{j}f(x, y, z_{0j})$. Используя эти соотношения, запишем с точностью до квадратичных членов плотность функции Лагранжа:

$$L(\mathbf{r}) = T - U_h - U_W - U_o,$$

где $U_b = mh_x$ — зеемановская энергия,

$$U_{W} = \frac{W}{2d} \left[\left(\frac{1}{\partial x} \right)^{2} + \left(\frac{\partial f}{\partial y} \right)^{2} \right] = \frac{W}{8M_{x}^{2}} \left[\left(\frac{1}{\partial x} \right)^{2} + \left(\frac{\partial m}{\partial y} \right)^{2} \right]$$

энергия упругого растяжения праниц,

$$U_{\sigma} = \frac{\pi}{2} d^2 \left(\frac{\partial m}{\partial x}\right)^2 \left(1 - \frac{m^2}{M_x^2}\right)$$

— энергия размагничивающих полей от доменных границ, $T = \frac{\mu d}{8M_x^2} \times \left(\frac{\partial m}{\partial t}\right)^2$ — кинетическая энергия. Из (1) следует уравнение движения

усредненной намагниченности:

$$\left[\frac{\mu d}{4M_x^2}\frac{\partial^2}{\partial t^2} + \left(\frac{Wd}{4M_y^2} + \pi d^2\right)\frac{\partial^2}{\partial x^2} + \frac{Wd}{4M_x^2}\frac{\partial^2}{\partial y^2}\right]m(\mathbf{r}) = h_x(\mathbf{r}).$$
(2)

В магнитостатическом приближении *m* и **h** связаны соотношением

$$\operatorname{rot} \mathbf{h} = 0, \operatorname{div} \mathbf{h} + 4\pi \frac{\partial m}{\partial x} = 0.$$
(3)

Уравнения (2), (3) вместе с граничными условиями на поверхности образца и определяют спектр малых колебаний доменных границ. Общее решение этой задачи представляет большие трудности. Рассмотрим приближенно два простых случая.

Плоские волны без учета граничных условий. Из (2), (3) следует дисперсионное соотношение

$$\omega_k^2 = \Omega_h^2 \left(\frac{k_x}{k}\right)^2 + B_x k_x^2 + B_y k_y^2, \tag{4}$$

где **k** — волновой вектор, $\Omega_h^2 = 16\pi M_x^2/(\mu d)$, $B_x = W/\mu + 4\pi M_x^2 d/\mu$, $B_y = W/\mu$. Спектр и групповая скорость зависят от постоянного поля через параметры M_x , W, μ , d. Данное решение оправдано в интервале $1/L \ll k \ll 1/d$ за исключением области низких частот, где U_h , U_W и U_a малы и при любых k нужно учитывать энергию, связанную с граничными условиями. Такая задача для волн плоскопараллельного смещения границ (когда $\mathbf{k} = \{0, 0, k\}$ и $U_h = U_W = U_\sigma = 0$) была рассмотрена в [13] для образца в виде пластины, бесконечной в плоскости y0z.

Колебания в сферическом образце. Ограничимся случаем высокочастотных длинноволновых колебаний, для которых можно пренебречь U_W и U_{σ} по сравнению с U_h , что соответствует условиям:

$$\omega \gg \Omega_{W} = \frac{2\pi}{\lambda} \sqrt{\frac{W}{\mu}}, \ \omega \gg \Omega_{\sigma} = \frac{4\pi M_{x}}{\lambda} \sqrt{\frac{\pi d}{\mu}}.$$
 (5)

В этом случае из (2) в гармоническом приближении следует

$$4\pi m = \chi h_r, \ \chi = -\Omega_h^2 / \omega^2, \tag{6}$$

т. е. амплитуда смещений границ пропорциональна локальному полю. Решая методом [14] уравнения (3), (6) совместно с условиями непрерывности на поверхности образца нормальной компоненты усредненной индукции и тангенциальной — поля **h**, получаем уравнение, корни которого ξ_{nmg} определяют резонансные частоты:

$$\omega_{nmq} = \Omega_h \xi_{nmq}, \frac{\xi^2 - 1}{\xi} - \frac{P_n^{\prime m}(\xi)}{P_n^m(\xi)} + n + 1 = 0, \qquad (7)$$

где P_n^m — присоединенный полином Лежандра первого рода, штрих производная по аргументу, q — номер корня. Для каждой пары чисел n, $m (0 \le m \le n-1)$ (7) имеет -E[(m-n)/2] корней (E(p) - целая)часть от p), которые все лежат в интервале $0 < \xi_{nmg} < 1$. Таким образом, при $k \rightarrow 0$ спектр волн (4) переходит в спектр колебаний (7). Разумеется, нулевое значение нижней границы частот спектра (7) чисто формально ввиду (5). Поскольку $\lambda \sim \hat{L}/(n-1)$, для колебаний с небольшими индексами при типичных для ферритов значениях параметров M_0 , W, μ , dобычно выполняется $\Omega_h \gg \Omega_\sigma$, Ω_W , т. е. имеется интервал частот, где (5) выполияется. Вообще говоря, рассмотренные колебания связаны с прецессией внутри доменов как через возбуждение коротких спиновых волн движущимися границами, так и через связь с «прецессионными» длинноволновыми колебаниями [9] (с тем же первым индексом n), что здесь не учитывалось. Однако первый механизм влияет в основном на затухание колебаний границ, а воздействие второго во многих случаях мало как ввиду большой разницы частот «прецессионных» и «трансляционных» колебаний, так и из-за существенных различий соответствующих им распределений m(r) и h(r) в образце.

m	ą	n = 1	n = 2	<i>n</i> = 3	<i>n</i> = 4	n = 5
0	0 1 2	0,5773	0,7746	0,3400 0,8611	0,5385 0,9062	0,2386 0,6612 0,9324
1	0		0,4472	0,6547	0,2852 0,7650	0,4688 0,8302
2	0			0,3779	0,5773	0,2506 0,6947
3	0				0,3333	0,5222
4	0					0,3015

79

1

Форма поверхности колеблющихся границ описывается уравнением (n-1)-го порядка. Она показана на рис. 1 для простейшего неоднородного колебания (200). Значения ξ_{nmq} для $n \ll 5$ приведены в таблице, а схематический вид спектра при $\mu d = \text{const}$ показан на рис. 2. Можно предположить, что некоторые из резонансов, наблюдавшиеся на ряде

Рис. 1. Положения доменных границ в плоскости y=0 для колебания (200) в моменты времени t=0 (пунктир) и $\omega t=\pi/2$ (сплошные линии). При $\omega t=3\pi/2$ смещения границ противоположны по знаку. Ширина доменов и смещения границ сильно увеличены для наглядности

Рис. 2. Схематические зависимости от постоянного поля H_0 резонансных частот колебаний с $n \leq 3$ при μ , d—const для сферического образца кубического кристалла ($K_1 < 0$, $H_0 \| [110] \| z$). H_s —поле насыщения, штрихпунктир — нижняя граница устойчивости двухфазной доменной структуры. Заштрихована область спектра «прецессионных» инзкочастотных мод

ферритов в диапазоне 20—120 МГц [15], соответствуют рассмотренным неоднородным колебаниям границ доменов. Разумеется, ввиду зависимости ц и d от H_0 действительный ход кривых $\omega_{nmq}(H_0)$ может сильно отличаться от показанного на рис. 2, но соотношения резонансных частот в приближении (5) останутся прежними. Следует также отметить, что дефекты образца, закрепляя отдельные участки границ, могут сильно исказить рассмотренную картину колебаний. Поэтому четкое наблюдение резонансов границ и соответствие их частот с результатами расчета можно ожидать только для высококачественных образцов ферритов.

СПИСОК ЛИТЕРАТУРЫ

[1] Walker L. R. Ferromagnetic resonance line structures. Resonant modes of ferromagnetic spheroids. J. Appl. Phys., 1958, 29, р. 318—323. [2] Winter J. M. Bloch wall excitations. Application to nuclear resonance in a Bloch wall.—Phys. Rev., 1961, 124, р. 452—459. [3] Куркин М. И., Танкеев А. П. Спиновые волны в ферромагнетике с доменными гранипами с учетом дипольной энергин.— Физ. мет. н металловедение, 1973, 36, с. 1149—1158. [4] Гилинский И. А. Колебания магнитных моментов в доменной границе.— ЖЭТФ, 1975, 68, с. 1032—1045. [5] Фарзтдинов М. М., Туров Е. А. Геория спиновых воли в ферромагнетике с доменной структурой.— Физ. мет. н металловедение, 1970, 29, с. 458—470. [6] Барьяхтар В. Г., Иванов Б. А. О высокочастотных сбойствах ферромагнетика с доменной структурой.— Физ. мет. и металловедение, 1973, 36, с. 690—697. [7] Döring W. Uber die Trägheit der wände zwischen Weißschen Bezirken.— Zs. Naturforsch., 1948, 3A, р. 373—379. [8] Landau L. D., Lifshitz E. M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies.— Phys. Zs. der S. U., 1935. 8, p. 153—169. [9] Киров С. А., Пильщиков А. И., Сырьев Н. Е. Магнитоста-

80

тические типы колебаний в образне с доменной структурой — ФТТ, 1974, 16, с. 3051— 3057. [10] Пильщиков А. И., Киров С. А. Магнитостатические колебания в образцах ферритов с доменной структурой.— В кн.: Физика и химия магнитных полупроводников и дизлектриков. М.: Изд-во МГУ, 1979, с. 80—102. [11] Киров С. А., Пильщиков А. И., Сырьев Н. Е. Спектры магнитостатических колебаний образца с доменной структурой.— ФТТ, 1975, 17, с. 2646—2652. [12] Гуревич А. Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973, с. 110—136. [13] Spreen J. H., Morgenthaler F. R. Magnetoelastic energy of stripe domain patterns.— J. Appl. Phys., 1978, 49, р. 1590—1591. [14] Fletcher P. C., Bell R. O. Ferrimagnetic resonance modes in spheres.— J. Appl. Phys., 1959, 30, р. 687—698. [15] Дейкова Г. М., Грешнов В. И. Резонансные явления в движении границ между доменами в ферритах.— Изв. вузов, сер. Физика, 1972, № 7, с. 42—45.

Поступила в редакцию 16.06.80

ВЕСТН. МОСК. УН-ТА. СЕР. З. ФИЗИКА. АСТРОНОМИЯ, 1981, Т. 22, № 4

УДК 621.373.7

КОГЕРЕНТНОЕ РАМАНОВСКОЕ СМЕШЕНИЕ ПРИ ОДНОВРЕМЕННОМ ВОЗБУЖДЕНИИ ПРЯМОЙ И ОБРАТНОЙ ВОЛН ВКР

Ю. Е. Дьяков, С. Ю. Никитин

(кафедра общей физики и волновых процессов)

1. Эффективность генерации ИК-излучения при когерентном рамановском смешении определяется параметрами молекулярных колебаний, возбуждаемых при ВКР. Расчет этих параметров проводился ранее в предположении, что рассеяние происходит только в направлении вперед [1]. Известно, однако, что при длительности импульса накачки $10^{-8}-10^{-9}$ с возникает интенсивное рассеяние в направлении назад [2]. Появление обратной стоксовой компоненты изменяет распределение молекулярных колебаний, что, в свою очередь, приводит к изменению КПД генерации ИК-излучения. Данная работа посвящена теоретическому анализу этого явления.

2. Система уравнений, описывающая стационарное ВКР при наличии прямой и обратной стоксовых компонент, имеет вид:

$$\begin{cases} \frac{dy}{d\zeta} = -(x_1 + x_2) y, \ \frac{dx_1}{d\zeta} = x_1 y, \ \frac{dx_2}{d\zeta} = -x_2 y, \\ y(\zeta = 0) = 1, \ x_1(\zeta = 0) = x_{10}, \ x_2(\zeta = G) = x_{2L}, \end{cases}$$
(1)

где $y = I_{\rm H}(\zeta)/I_{\rm H0}$; $x_{12} = I_{1,2}(\zeta) \omega_{\rm H}/I_{\rm H0}\omega_{\rm C}$ — нормированные интенсивности накачки, попутной (индекс 1) и встречной (индекс 2) стоксовых компонент; $\zeta = \Gamma_0 z$ — безразмерная координата, $\Gamma_0 = g_c I_{\rm H0}$ — инкремент ВКР, $I_{\rm H0} = I_{\rm H}(z=0)$ — интенсивность накачки, g_c — параметр усиления при ВКР (одинаковый для рассеяния вперед и назад [3]), $G = \Gamma_0 L$, L длина нелинейной среды; $\omega_{\rm H}$, ω_c — частоты накачки и стоксовой компоненты.

Из уравнений (1) вытекают законы сохранения:

$$y + x_1 - x_2 \equiv c_1 = \text{const}, \ x_1 x_2 \equiv c_2 = \text{const}.$$
 (2)

Записывая (2) для правого (z=L) и левого (z=0) концов системы, получим

$$1 + x_{10} - x_{20} = y_L + x_{1L} - x_{2L}, \quad x_{10} x_{20} = x_{1L} x_{2L}, \quad (3)$$

6 ВМУ, № 4, физика, астрономия

81